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Getting Started


Installation

There exists three different possiblities to run the models:


	Clone the repository, with the latest release:




git clone --branch v0.1.8 https://github.com/Priesemann-Group/covid19_inference






	Install the module via pip




pip install git+https://github.com/Priesemann-Group/covid19_inference.git@v0.1.8





3. Run the notebooks directly in Google Colab. At the top of the notebooks files
there should be a symbol which opens them directly in a Google Colab instance.




First Steps

To get started, we recommend to look at one of the currently two example notebooks:


	
	SIR model with one german state [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_one_bundesland.ipynb]
	This model is similar to the one discussed in our paper: Inferring COVID-19 spreading rates and potential change points for case number forecasts [https://arxiv.org/abs/2004.01105].
The difference is that the delay between infection and report is now lognormal distributed and not
fixed.







	
	Hierarchical model of the German states [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_bundeslaender.ipynb]
	This builds a hierarchical bayesian model of the states of Germany. Caution, seems to be currently broken!









We can for example recommend the following articles about bayesian modeling:

As a introduction to Bayesian statistics and the python package (PyMC3) that we use:
https://docs.pymc.io/notebooks/api_quickstart.html

This is a good post about hierarchical Bayesian models in general:
https://statmodeling.stat.columbia.edu/2014/01/21/everything-need-know-bayesian-statistics-learned-eight-schools/







          

      

      

    

  

    
      
          
            
  
Examples

We supply a number of examples which can be found in the scripts [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_one_bundesland.ipynb]
folder of the github repository.

These examples are given as python files and interactive ipython notebooks. The python files get automatically converted into ipython notebooks for easier use with google colab.
The conversion is done by a slightly modified version of the python2jupyter module [https://github.com/remykarem/python2jupyter], which can be found here [https://github.com/pSpitzner/python2jupyter].

For starters the most useful examples are the non hierarchical one bundesland example [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/interactive/example_one_bundesland.ipynb] and the hierarchical analysis of the bundeslaender [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/interactive/example_bundeslaender.ipynb].





          

      

      

    

  

    
      
          
            
  
Disclaimer

We evaluate the data provided by the John Hopkins University link [https://github.com/CSSEGISandData/COVID-19].
We exclude any liability with regard to the quality and accuracy of the data used, and also with regard to the correctness of the statistical analysis. The evaluation of the different growth phases represents solely our personal opinion.

The number of cases reported may be significantly lower than the number of people actually infected. Also, we must point out that week-ends and changes in the test system may lead to fluctuations in reported cases that have no equivalent in actual case numbers.

Certainly, at this stage all statistical predictions are subject to great uncertainty because the general trends of the epidemic are not yet clear. In any case, the statistical trends that we interpret from the data are only suitable for predictions if the measures taken by the government and authorities to contain the pandemic remain in force and are being followed by the population. We must also point out that, even if the statistics indicate that the epidemic is under control, we may at any time see a resurgence of infection figures until the disease is eradicated worldwide.





          

      

      

    

  

    
      
          
            
  
Model

If you are familiar with pymc3, then looking at the example below should explain
how our model works. Otherwise, here is a quick overivew:


	First, we have to create an instance of the base class (that is derived from pymc3s model class). It has some convenient properties to get the range of the data, simulation length and so forth.


	We then add details that base model. They correspond to the actual (physical) model features, such as the change points, the reporting delay and the week modulation.



	Every feature has it’s own function that takes in arguments to set prior
assumptions.


	Sometimes they also take in input (data, reported cases … ) but none of the
function performs any actual modifactions on the data. They only tell pymc3 what
it is supposed to do during the sampling.


	None of our functions actually modifies any data. They rather define ways how
pymc3 should modify data during the sampling.


	Most of the feature functions add variables to the pymc3.trace, see the function arguments that start with name_.









	in pymc3 it is common to use a context, as we also do in the example. everything within the block with cov19.model.Cov19Model(**params_model) as this_model: automagically applies to this_model. Alternatively, you could provide a keyword to each function model=this_model.





Example

import datetime

import pymc3 as pm
import numpy as np
import covid19_inference as cov19

# limit the data range
bd = datetime.datetime(2020, 3, 2)

# download data
jhu = cov19.data_retrieval.JHU(auto_download=True)
new_cases = jhu.get_new(country="Germany", data_begin=bd)

# set model parameters
params_model = dict(
    new_cases_obs=new_cases,
    data_begin=bd,
    fcast_len=28,
    diff_data_sim=16,
    N_population=83e6,
)

# change points like in the paper
change_points = [
    dict(pr_mean_date_transient=datetime.datetime(2020, 3, 9)),
    dict(pr_mean_date_transient=datetime.datetime(2020, 3, 16)),
    dict(pr_mean_date_transient=datetime.datetime(2020, 3, 23)),
]

# create model instance and add details
with cov19.model.Cov19Model(**params_model) as this_model:
    # apply change points, lambda is in log scale
    lambda_t_log = cov19.model.lambda_t_with_sigmoids(
        pr_median_lambda_0=0.4,
        pr_sigma_lambda_0=0.5,
        change_points_list=change_points,
    )

    # prior for the recovery rate
    mu = pm.Lognormal(name="mu", mu=np.log(1 / 8), sigma=0.2)

    # new Infected day over day are determined from the SIR model
    new_I_t = cov19.model.SIR(lambda_t_log, mu)

    # model the reporting delay, our prior is ten days
    new_cases_inferred_raw = cov19.model.delay_cases(
        cases=new_I_t,
        pr_mean_of_median=10,
    )

    # apply a weekly modulation, fewer reports during weekends
    new_cases_inferred = cov19.model.week_modulation(new_cases_inferred_raw)

    # set the likeliehood
    cov19.model.student_t_likelihood(new_cases_inferred)

# run the sampling
trace = pm.sample(model=this_model, tune=50, draws=10, init="advi+adapt_diag")
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Model Base Class




Compartmental models


SIR — susceptible-infected-recovered




More Details


[image: I_{new}(t) &= \lambda_t I(t-1)  \frac{S(t-1)}{N}   \\ S(t) &= S(t-1) - I_{new}(t)  \\ I(t) &= I(t-1) + I_{new}(t) - \mu  I(t)]


The prior distributions of the recovery rate [image: \mu]
and [image: I(0)] are set to


[image: \mu &\sim \text{LogNormal}\left[         \log(\text{pr\_median\_mu}), \text{pr\_sigma\_mu}     \right] \\ I(0) &\sim \text{HalfCauchy}\left[         \text{pr\_beta\_I\_begin}     \right]]







SEIR-like —  susceptible-exposed-infected-recovered




More Details


[image: E_{\text{new}}(t) &= \lambda_t I(t-1) \frac{S(t)}{N}   \\ S(t) &= S(t-1) - E_{\text{new}}(t)  \\ I_\text{new}(t) &= \sum_{k=1}^{10} \beta(k) E_{\text{new}}(t-k)   \\ I(t) &= I(t-1) + I_{\text{new}}(t) - \mu  I(t) \\ \beta(k) & = P(k) \sim \text{LogNormal}\left[         \log(d_{\text{incubation}}), \text{sigma\_incubation}     \right]]


The recovery rate [image: \mu] and the incubation period is the same for all regions and follow respectively:


[image: P(\mu) &\sim \text{LogNormal}\left[        \text{log(pr\_median\_mu), pr\_sigma\_mu}    \right] \\ P(d_{\text{incubation}}) &\sim \text{Normal}\left[        \text{pr\_mean\_median\_incubation, pr\_sigma\_median\_incubation}    \right]]


The initial number of infected and newly exposed differ for each region and follow prior HalfCauchy [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.HalfCauchy] distributions:


[image: E(t)  &\sim \text{HalfCauchy}\left[         \text{pr\_beta\_E\_begin}     \right] \:\: \text{for} \: t \in {-9, -8, ..., 0}\\ I(0)  &\sim \text{HalfCauchy}\left[         \text{pr\_beta\_I\_begin}     \right].]
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Likelihood




Spreading Rate




Delay


More Details


[image: y_\text{delayed}(t) &= \sum_{\tau=0}^T y_\text{input}(\tau) \text{LogNormal}\left[     \log(\text{delay}), \text{pr\_median\_scale\_delay} \right](t - \tau) \\ \log(\text{delay}) &= \text{Normal}\left[     \log(\text{pr\_sigma\_delay} ), \text{pr\_sigma\_delay} \right]]


The LogNormal distribution is a function evaluated at [image: t - \tau].

If the model is 2-dimensional (hierarchical), the [image: \log(\text{delay})] is hierarchically
modelled with the hierarchical_normal() function using the default parameters
except that the prior sigma of delay_L2 is HalfNormal distributed
(error_cauchy=False).
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Data Retrieval
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Plotting

We provide a lot of plotting functions which can be used to recreate our plots or
create completely new visualizations. If you are familiar with matplotlib it should
be no problem to use them extensively.

We provide three different types of functions here:


	High level functions These can be used create figures similar to our paper Dehning et al. arXiv:2004.01105. The are neat little one liners which create a good looking plot from our model, but do not have a lot of customization options.


	Low level functions  These extend the normal matplotlib plotting functions and can be used to plot arbitrary data. They have a lot of customization options, it could take some time to get nicely looking plots with these functions though.


	Helper functions These are mainly functions that manipulate data or retrieve data from our model. These do not have to be used most of the time and are only documented here for completeness.




If one just wants to recreate our figures with a different color. The easiest was is to change the default rc parameters.


High level functions




Low level functions


Example

In this example we want to use the low level time series function to plot the new daily cases and deaths reported by the Robert Koch institute.

import datetime
import matplotlib.pyplot as plt
import covid19_inference as cov19

# Data retrieval i.e. download new data from RobertKochInstitue
rki = cov19.data_retrieval.RKI()
rki.download_all_available_data()

new_deaths = rki.get_new(
    value = "deaths",
    data_begin=datetime.datetime(2020,3,15), #arbitrary data
    data_end=datetime.datetime.today())

new_cases = rki.get_new(
    value = "confirmed",
    data_begin=datetime.datetime(2020,3,15),
    data_end=datetime.datetime.today())

# Create a multiplot
fig, axes = plt.subplots(2,1, figsize=(12,6))

# Plot the new cases onto axes[0]
cov19.plot._timeseries(
    x=new_cases.index,
    y=new_cases,
    ax=axes[0],
    what="model", #We define model here to get a line instead of data points
)

# Plot the new deaths onto axes[1]
cov19.plot._timeseries(
    x=new_deaths.index,
    y=new_deaths,
    ax=axes[1],
    what="model", #We define model here to get a line instead of data points
)

# Label the plots

axes[0].set_title("New cases")

axes[1].set_title("New deaths")

# Show the figure
fig.show()





[image: ../_images/exampe_timeseries.png]
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Variables saved in the trace

The trace by default contains the following parameters in the
SIR/SEIR hierarchical model. XXX denotes a number.








	Name in trace

	Dimensions

	Created by function





	lambda_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs



	lambda_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs



	sigma_lambda_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs



	transient_day_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs



	transient_day_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs



	sigma_transient_day_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs



	transient_len_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs



	transient_len_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs



	sigma_transient_len_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs



	delay_L1

	samples

	delay_cases



	delay_L2

	samples x regions

	delay_cases



	sigma_delay_L2

	samples

	delay_cases



	weekend_factor_L1

	samples

	week_modulation



	weekend_factor_L2

	samples x regions

	week_modulation



	sigma_weekend_factor_L2

	samples

	week_modulation



	offset_modulation

	samples

	week_modulation



	new_cases_raw

	samples x time x regions

	week_modulation



	mu

	samples

	SIR/SEIR



	I_begin

	samples x regions

	SIR/SEIR



	new_cases

	samples x time x regions

	SIR/SEIR



	sigma_obs

	samples x regions

	SIR/SEIR



	new_E_begin

	samples x 11 x regions

	SEIR



	median_incubation_L1

	samples

	SEIR



	median_incubation_L2

	samples x regions

	SEIR



	sigma_median_incubation_L2

	samples

	SEIR






For the non-hierchical model, variables with _L2 suffixes are missing, and _L1 suffixes
are removed from the name.





          

      

      

    

  

    
      
          
            
  
Contributing

We always welcome contributions. Here we gather some guidelines
to make the process as smooth as possible.


Beginning

To see where help is needed, go to the issues page on Github. If you want to
begin on an issue, make a comment below and begin a draft pull request:
https://github.blog/2019-02-14-introducing-draft-pull-requests/ You can link the
pull request on the right side of the commit to it.

When you have
finished working on the issue, change it to a regular pull request. Check that
there are no conflicts to the current master
(https://www.digitalocean.com/community/tutorials/how-to-rebase-and-update-a-pull-request)




Code formatting

We use black https://github.com/psf/black as automatic code formatter.
Please run your code through it before you open a pull request.

We do not check for formatting in the testing (travis) but have a config in the repository that uses black as a pre-commit hook [https://black.readthedocs.io/en/stable/version_control_integration.html].

This snippet should get you up and running:

conda install -c conda-forge black
conda install -c conda-forge pre-commit
pre-commit install





Try to stick to PEP 8 [https://www.python.org/dev/peps/pep-0008/].
You can use type annotations [https://www.python.org/dev/peps/pep-0484/]
if you want, but it is not necessary or encouraged.




Testing

We use travis and pytest. To check your changes locally:

python -m pytest --log-level=INFO --log-cli-level=INFO





It would be great if anything that is added to the code-base has an according test in the tests folder. We are not there yet, but it is on the todo. Be encouraged to add tests :)




Documentation

The documentation is built using Sphinx from the docstrings. To test it before
submitting, navigate with a terminal to the docs/ directory. Install if necessary
the packages listed in piprequirements.txt run make html. The documentation
can then be accessed in docs/_build/html/index.html. As an example you can
look at the documentation of covid19_inference.model.SIR()







          

      

      

    

  

    
      
          
            
  
Debugging

This is some pointer to help debugging models and sampling issues


General approach for nans/infs during sampling

The idea of this approach is to sample from the prior and then run the model. If the
log likelihood is then -inf, there is a problem, and the output of the theano functions is
inspected.

Sample from prior:

from pymc3.util import (
    get_untransformed_name,
    is_transformed_name)

varnames = list(map(str, model.vars))

for name in varnames:
    if is_transformed_name(name):
        varnames.append(get_untransformed_name(name))

with model:
    points = pm.sample_prior_predictive(var_names = varnames)
    points_list = []
    for i in range(len(next(iter(points.values())))):
        point_dict = {}
        for name, val in points.items():
                point_dict[name] = val[i]
        points_list.append(point_dict)





points_list is a list of the starting points for the model, sampled from the prior.
Then to run the model and print the log-likelihood:

fn = model.fn(model.logpt)

for point in points_list[:]:
    print(fn(point))





To monitor the output and save it in a file (for use in ipython).
Learned from:
http://deeplearning.net/software/theano/tutorial/debug_faq.html#how-do-i-step-through-a-compiled-function

%%capture cap --no-stderr
def inspect_inputs(i, node, fn):
    print(i, node, "input(s) value(s):", [input[0] for input in fn.inputs],
          end='')

def inspect_outputs(i, node, fn):
    print(" output(s) value(s):", [output[0] for output in fn.outputs])

fn_monitor = model.fn(model.logpt,
                      mode=theano.compile.MonitorMode(
                           pre_func=inspect_inputs,
                           post_func=inspect_outputs).excluding(
                                 'local_elemwise_fusion', 'inplace'))

fn = model.fn(model.logpt)

for point in points_list[:]:
    if fn(point) < -1e10:
        print(fn_monitor(point))
        break





In a new cell:

with open('output.txt', 'w') as f:
    f.write(cap.stdout)





Then one can open output.txt in a text editor, and follow from where infs or nans come from
by following the inputs and outputs up through the graph




Sampler: MCMC (Nuts)


Divergences

During sampling, a significant fraction of divergences are a sign that the sampler
doesn’t sample the whole posterior. In this case the model should be reparametrized.
See this tutorial for a typical example: https://docs.pymc.io/notebooks/Diagnosing_biased_Inference_with_Divergences.html

And these papers include some more details: https://pdfs.semanticscholar.org/7b85/fb48a077c679c325433fbe13b87560e12886.pdf
https://arxiv.org/pdf/1312.0906.pdf




Bad initial energy

This typically occurs when some distribution in the model can’t be evaluated at
the starting point of chain. Run this to see which distribution throws nans or infs:

for RV in model.basic_RVs:
    print(RV.name, RV.logp(model.test_point))





However, this is only evaluates the test_point. When PyMC3 starts sampling, it adds some jitter
around this test_point, which then could lead to nans. Run this to add jitter and then evaluate
the logp:

chains=4
for RV in model.basic_RVs:
    print(RV.name)

    for _ in range(chains):
        mean = {var: val.copy() for var, val in model.test_point.items()}
        for val in mean.values():
            val[...] += 2 * np.random.rand(*val.shape) - 1
        print(RV.logp(mean))





This code could potentially change in newer versions of PyMC3 (this is tested in 3.8).
Read the source code, to know which random jitter PyMC3 currently adds at beginning.




Nans occur during sampling

Run the sampler with the debug mode of Theano.

from theano.compile.nanguardmode import NanGuardMode
mode = NanGuardMode(nan_is_error=True, inf_is_error=False, big_is_error=False,
                    optimizer='o1')
trace = pm.sample(mode=mode)





However this doesn’t lead to helpful messages if nans occur during gradient evaluations.






Sampler: Variational Inference

There exist some ways to track parameters during sampling. An example:

with model:
    advi = pm.ADVI()
    print(advi.approx.group)

    print(advi.approx.mean.eval())
    print(advi.approx.std.eval())

    tracker = pm.callbacks.Tracker(
        mean=advi.approx.mean.eval,  # callable that returns mean
        std=advi.approx.std.eval  # callable that returns std
    )

    approx = advi.fit(100000, callbacks=[tracker],
                      obj_optimizer=pm.adagrad_window(learning_rate=1e-3),)
                     #total_grad_norm_constraint=10) #constrains maximal gradient, could help


    print(approx.groups[0].bij.rmap(approx.params[0].eval()))

    plt.plot(tracker['mean'])
    plt.plot(tracker['std'])





For the tracker, the order of the parameters is saved in:

approx.ordering.by_name





and the indices encoded there in the slc field.
To plot the mean value of a given parameter name, run:

plt.plot(np.array(tracker['mean'])[:, approx.ordering.by_name['name'].slc]





The debug mode is set with the following parameter:

from theano.compile.nanguardmode import NanGuardMode
mode = NanGuardMode(nan_is_error=True, inf_is_error=False, big_is_error=False,
                    optimizer='o1')
approx = advi.fit(100000, callbacks=[tracker],
             fn_kwargs={'mode':mode})
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