

Overview

	Getting Started

	Disclaimer

Reference

	Model

	Data Retrieval

	Plotting

	Variables saved in the trace

For developpers

	Contributing

	Debugging

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Installation

There exists three different possiblities to run the models:

	Clone the repository, with the latest release:

git clone --branch v0.1.7 https://github.com/Priesemann-Group/covid19_inference

	Install the module via pip

pip install git+https://github.com/Priesemann-Group/covid19_inference.git@v0.1.7

3. Run the notebooks directly in Google Colab. At the top of the notebooks files
there should be a symbol which opens them directly in a Google Colab instance.

First Steps

To get started, we recommend to look at one of the currently two example notebooks:

	
	SIR model with one german state [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_one_bundesland.ipynb]
	This model is similar to the one discussed in our paper: Inferring COVID-19 spreading rates and potential change points for case number forecasts [https://arxiv.org/abs/2004.01105].
The difference is that the delay between infection and report is now lognormal distributed and not
fixed.

	
	Hierarchical model of the German states [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_bundeslaender.ipynb]
	This builds a hierarchical bayesian model of the states of Germany

We can for example recommend the following articles about bayesian modeling:

As a introduction to Bayesian statistics and the python package (PyMC3) that we use:
https://docs.pymc.io/notebooks/api_quickstart.html

This is a good post about hierarchical Bayesian models in general:
https://statmodeling.stat.columbia.edu/2014/01/21/everything-need-know-bayesian-statistics-learned-eight-schools/

Disclaimer

We evaluate the data provided by the John Hopkins University link [https://github.com/CSSEGISandData/COVID-19].
We exclude any liability with regard to the quality and accuracy of the data used, and also with regard to the correctness of the statistical analysis. The evaluation of the different growth phases represents solely our personal opinion.

The number of cases reported may be significantly lower than the number of people actually infected. Also, we must point out that week-ends and changes in the test system may lead to fluctuations in reported cases that have no equivalent in actual case numbers.

Certainly, at this stage all statistical predictions are subject to great uncertainty because the general trends of the epidemic are not yet clear. In any case, the statistical trends that we interpret from the data are only suitable for predictions if the measures taken by the government and authorities to contain the pandemic remain in force and are being followed by the population. We must also point out that, even if the statistics indicate that the epidemic is under control, we may at any time see a resurgence of infection figures until the disease is eradicated worldwide.

Model

	
class covid19_inference.model.Cov19Model(new_cases_obs, data_begin, fcast_len, diff_data_sim, N_population, name='', model=None)

	Model class used to create a covid-19 propagation dynamics model.
Parameters below are passed to the constructor.
Attributes (Variables) are available after creation and can be accessed from
every instance. Some background:

	The simulation starts diff_data_sim days before the data.

	The data has a certain length, on which the inference is based. This
length is given by new_cases_obs.

	After the inference, a forecast takes of length fcast_len takes
place, starting on the day after the last data point in new_cases_obs.

	In total, traces produced by a model run have the length
sim_len = diff_data_sim + data_len + fcast_len

	Date ranges include both boundaries. For example, if data_begin is March
1 and data_end is March 3 then data_len will be 3.

	Parameters

	
	new_cases_obs (1 or 2d array) – If the array is two-dimensional, an hierarchical model will be constructed.
First dimension is then time, the second the region/country.

	data_begin (datatime.datetime) – Date of the first data point

	fcast_len (int [https://docs.python.org/3/library/functions.html#int]) – Number of days the simulations runs longer than the data

	diff_data_sim (int [https://docs.python.org/3/library/functions.html#int]) – Number of days the simulation starts earlier than the data. Should be
significantly longer than the delay between infection and report of cases.

	N_population (number or 1d array) – Number of inhabitance in region, needed for the S(E)IR model. Is ideally 1
dimensional if new_cases_obs is 2 dimensional

	name (string) – suffix appended to the name of random variables saved in the trace

	model – specify a model, if this one should expand another

	Variables

	
	new_cases_obs (1 or 2d array) – as passed during construction

	data_begin (datatime.datetime) – date of the first data point in the data

	data_end (datatime.datetime) – date of the last data point in the data

	sim_begin (datatime.datetime) – date at which the simulation begins

	sim_end (datatime.datetime) – date at which the simulation ends (should match fcast_end)

	fcast_begin (datatime.datetime) – date at which the forecast starts (should be one day after data_end)

	fcast_end (datatime.datetime) – data at which the forecast ends

	data_len (int [https://docs.python.org/3/library/functions.html#int]) – total number of days in the data

	sim_len (int [https://docs.python.org/3/library/functions.html#int]) – total number of days in the simulation

	fcast_len (int [https://docs.python.org/3/library/functions.html#int]) – total number of days in the forecast

	diff_data_sim (int [https://docs.python.org/3/library/functions.html#int]) – difference in days between the simulation begin and the data begin.
The simulation starting time is usually earlier than the data begin.

Example

with Cov19Model(**params) as model:
 # Define model here

	
covid19_inference.model.modelcontext(model)

	return the given model or try to find it in the context if there was
none supplied.

	
covid19_inference.model.student_t_likelihood(new_cases_inferred, pr_beta_sigma_obs=30, nu=4, offset_sigma=1, model=None, data_obs=None, name_student_t='_new_cases_studentT', name_sigma_obs='sigma_obs')

	Set the likelihood to apply to the model observations (model.new_cases_obs)
We assume a StudentT [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.StudentT] distribution because it is robust against outliers [Lange1989].
The likelihood follows:

[image: P(\text{data_obs}) &\sim StudentT(\text{mu} = \text{new_cases_inferred}, sigma =\sigma, \text{nu} = \text{nu})\\ \sigma &= \sigma_r \sqrt{\text{new_cases_inferred} + \text{offset_sigma}}]

The parameter [image: \sigma_r] follows
a HalfCauchy [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.HalfCauchy] prior distribution with parameter beta set by
pr_beta_sigma_obs. If the input is 2 dimensional, the parameter [image: \sigma_r] is different for every region.

	Parameters

	
	new_cases_inferred (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – One or two dimensonal array. If 2 dimensional, the first dimension is time and the second are the
regions/countries

	pr_beta_sigma_obs (float [https://docs.python.org/3/library/functions.html#float]) – The beta of the HalfCauchy [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.HalfCauchy] prior distribution of [image: \sigma_r].

	nu (float [https://docs.python.org/3/library/functions.html#float]) – How flat the tail of the distribution is. Larger nu should make the model
more robust to outliers. Defaults to 4 [Lange1989].

	offset_sigma (float [https://docs.python.org/3/library/functions.html#float]) – An offset added to the sigma, to make the inference procedure robust. Otherwise numbers of
new_cases_inferred would lead to very small errors and diverging likelihoods. Defaults to 1.

	model – The model on which we want to add the distribution

	data_obs (array) – The data that is observed. By default it is model.new_cases_ob

	name_student_t – The name under which the studentT distribution is saved in the trace.

	name_sigma_obs – The name under which the distribution of the observable error is saved in the trace

	Returns

	None

References

	Lange1989(1,2)

	Lange, K., Roderick J. A. Little, & Jeremy M. G. Taylor. (1989).
Robust Statistical Modeling Using the t Distribution.
Journal of the American Statistical Association,
84(408), 881-896. doi:10.2307/2290063

	
covid19_inference.model.SIR(lambda_t_log, mu, pr_I_begin=100, model=None, return_all=False, save_all=False)

	Implements the susceptible-infected-recovered model.

[image: I_{new}(t) &= \lambda_t I(t-1) \frac{S(t-1)}{N} \\ S(t) &= S(t-1) - I_{new}(t) \\ I(t) &= I(t-1) + I_{new}(t) - \mu I(t)]

The prior distribution of the recovery rate [image: \mu] is set to
[image: LogNormal(\text{log(pr_median_mu)), pr_sigma_mu})]. And the prior distribution of
[image: I(0)] to [image: HalfCauchy(\text{pr_beta_I_begin})]

	Parameters

	
	lambda_t_log (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the logarithm of the spreading rate, 1 or 2-dimensional. If 2-dimensional the first
dimension is time.

	mu (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – the recovery rate [image: \mu], typically a random variable. Can be 0 or 1-dimensional. If 1-dimensional,
the dimension are the different regions.

	pr_I_begin (float or array_like or TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – Prior beta of the Half-Cauchy distribution of [image: I(0)].

	pr_median_mu (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior for the median of the lognormal distrubution of the recovery rate [image: \mu].

	pr_sigma_mu (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior for the sigma of the lognormal distribution of recovery rate [image: \mu].

	model (Cov19Model) – if none, it is retrieved from the context

	return_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, returns new_I_t, I_t, S_t otherwise returns only new_I_t

	save_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, saves new_I_t, I_t, S_t in the trace, otherwise it saves only new_I_t

	Returns

	
	new_I_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the number daily newly infected persons.

	I_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the infected (if return_all set to True)

	S_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the susceptible (if return_all set to True)

	
covid19_inference.model.SEIR(lambda_t_log, pr_beta_I_begin=100, pr_beta_new_E_begin=50, pr_median_mu=0.125, pr_mean_median_incubation=4, pr_sigma_median_incubation=1, sigma_incubation=0.4, pr_sigma_mu=0.2, model=None, return_all=False, save_all=False, name_median_incubation='median_incubation')

	Implements a model similar to the susceptible-exposed-infected-recovered model. Instead of a exponential decaying
incubation period, the length of the period is lognormal distributed. The complete equation is:

[image: E_{\text{new}}(t) &= \lambda_t I(t-1) \frac{S(t)}{N} \\ S(t) &= S(t-1) - E_{\text{new}}(t) \\ I_\text{new}(t) &= \sum_{k=1}^{10} \beta(k) E_{\text{new}}(t-k) \\ I(t) &= I(t-1) + I_{\text{new}}(t) - \mu I(t) \\ \beta(k) & = P(k) \sim LogNormal(\text{log}(d_{\text{incubation}})), \text{sigma_incubation})]

The recovery rate [image: \mu] and the incubation period is the same for all regions and follow respectively:

[image: P(\mu) &\sim LogNormal(\text{log(pr_median_mu)), pr_sigma_mu}) \\ P(d_{\text{incubation}}) &\sim Normal(\text{pr_mean_median_incubation, pr_sigma_median_incubation})]

The initial number of infected and newly exposed differ for each region and follow prior
HalfCauchy [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.HalfCauchy] distributions:

[image: E(t) &\sim HalfCauchy(\text{pr_beta_E_begin}) \:\: \text{ for} \: t \in \{-9, -8, ..., 0\}\\ I(0) &\sim HalfCauchy(\text{pr_beta_I_begin}).]

	Parameters

	
	lambda_t_log (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the logarithm of the spreading rate, 1 or 2-dimensional. If 2-dimensional, the first
dimension is time.

	pr_beta_I_begin (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior beta of the HalfCauchy [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.HalfCauchy] distribution of [image: I(0)].

	pr_beta_new_E_begin (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior beta of the HalfCauchy [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.HalfCauchy] distribution of [image: E(0)].

	pr_median_mu (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior for the median of the Lognormal [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.Lognormal] distribution of the recovery rate [image: \mu].

	pr_mean_median_incubation – Prior mean of the Normal [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.Normal] distribution of the median incubation delay [image: d_{\text{incubation}}].
Defaults to 4 days [Nishiura2020], which is the median serial interval (the important measure here is not exactly
the incubation period, but the delay until a person becomes infectious which seems to be about
1 day earlier as showing symptoms).

	pr_sigma_median_incubation – Prior sigma of the Normal [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.Normal] distribution of the median incubation delay [image: d_{\text{incubation}}].
Default is 1 day.

	sigma_incubation – Scale parameter of the Lognormal [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.Lognormal] distribution of the incubation time/
delay until infectiousness. The default is set to 0.4, which is about the scale found in [Nishiura2020], [Lauer2020].

	pr_sigma_mu (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior for the sigma of the lognormal distribution of recovery rate [image: \mu].

	model (Cov19Model) – if none, it is retrieved from the context

	return_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, returns new_I_t, new_E_t, I_t, S_t otherwise returns only new_I_t

	save_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, saves new_I_t, new_E_t, I_t, S_t in the trace, otherwise it saves only new_I_t

	name_median_incubation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name under which the median incubation time is saved in the trace

	Returns

	
	new_I_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the number daily newly infected persons.

	new_E_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the number daily newly exposed persons. (if return_all set to True)

	I_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the infected (if return_all set to True)

	S_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – time series of the susceptible (if return_all set to True)

References

	Nishiura2020(1,2)

	Nishiura, H.; Linton, N. M.; Akhmetzhanov, A. R.
Serial Interval of Novel Coronavirus (COVID-19) Infections.
Int. J. Infect. Dis. 2020, 93, 284–286. https://doi.org/10.1016/j.ijid.2020.02.060.

	Lauer2020

	Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J.
The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application.
Ann Intern Med 2020. https://doi.org/10.7326/M20-0504.

	
covid19_inference.model.delay_cases(new_I_t, pr_median_delay=10, pr_sigma_median_delay=0.2, pr_median_scale_delay=0.3, pr_sigma_scale_delay=None, model=None, save_in_trace=True, name_delay='delay', name_delayed_cases='new_cases_raw', len_input_arr=None, len_output_arr=None, diff_input_output=None)

	Convolves the input by a lognormal distribution, in order to model a delay:

[image: y_\text{delayed}(t) &= \sum_{\tau=0}^T y_\text{input}(\tau) LogNormal[log(\text{delay}), \text{pr_median_scale_delay}](t - \tau)\\ log(\text{delay}) &= Normal(log(\text{pr_sigma_delay}), \text{pr_sigma_delay})]

For clarification: the [image: LogNormal] distribution is a function evaluated at [image: t - \tau].

If the model is 2-dimensional, the [image: log(\text{delay})] is hierarchically modelled with the
hierarchical_normal() function using the default parameters except that the
prior [image: \sigma] of [image: \text{delay}_\text{L2}] is HalfNormal distributed (error_cauchy=False).

	Parameters

	
	new_I_t (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – The input, typically the number newly infected cases [image: I_{new}(t)] of from the output of
SIR() or SEIR().

	pr_median_delay (float [https://docs.python.org/3/library/functions.html#float]) – The mean of the normal distribution which
models the prior median of the LogNormal delay kernel.

	pr_sigma_median_delay (float [https://docs.python.org/3/library/functions.html#float]) – The standart devaiation of normal distribution which
models the prior median of the LogNormal delay kernel.

	pr_median_scale_delay (float [https://docs.python.org/3/library/functions.html#float]) – The scale (width) of the LogNormal delay kernel.

	pr_sigma_scale_delay (float [https://docs.python.org/3/library/functions.html#float]) – If it is not None, the scale is of the delay is kernel follows a prior
LogNormal distribution, with median pr_median_scale_delay and
scale pr_sigma_scale_delay.

	model (Cov19Model) – if none, it is retrieved from the context

	save_in_trace (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to save [image: y_\text{delayed}] in the trace

	name_delay (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name under which the delay is saved in the trace, suffixes and prefixes are added depending on which
variable is saved.

	name_delayed_cases (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name under which the delay is saved in the trace, suffixes and prefixes are added depending on which
variable is saved.

	len_input_arr – Length of new_I_t. By default equal to model.sim_len. Necessary because the shape of theano
tensors are not defined at when the graph is built.

	len_output_arr (int [https://docs.python.org/3/library/functions.html#int]) – Length of the array returned. By default it set to the length of the cases_obs saved in the model plus
the number of days of the forecast.

	diff_input_output (int [https://docs.python.org/3/library/functions.html#int]) – Number of days the returned array begins later then the input. Should be significantly larger than
the median delay. By default it is set to the model.diff_data_sim.

	Returns

	new_cases_inferred (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – The delayed input [image: y_\text{delayed}(t)], typically the daily number new cases that one expects to measure.

	
covid19_inference.model.week_modulation(new_cases_raw, week_modulation_type='abs_sine', pr_mean_weekend_factor=0.3, pr_sigma_weekend_factor=0.5, week_end_days=(6, 7), model=None, save_in_trace=True)

	Adds a weekly modulation of the number of new cases:

[image: \text{new_cases} &= \text{new_cases_raw} \cdot (1-f(t))\,, \qquad\text{with}\\ f(t) &= f_w \cdot \left(1 - \left|\sin\left(\frac{\pi}{7} t- \frac{1}{2}\Phi_w\right)\right| \right),]

if week_modulation_type is "abs_sine" (the default). If week_modulation_type is "step", the
new cases are simply multiplied by the weekend factor on the days set by week_end_days

The weekend factor [image: f_w] follows a Lognormal distribution with
median pr_mean_weekend_factor and sigma pr_sigma_weekend_factor. It is hierarchically constructed if
the input is two-dimensional by the function hierarchical_normal() with default arguments.

The offset from Sunday [image: \Phi_w] follows a flat VonMises [https://docs.pymc.io/api/distributions/continuous.html#pymc3.distributions.continuous.VonMises] distribution
and is the same for all regions.

	Parameters

	
	new_cases_raw (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – The input array, can be one- or two-dimensional

	week_modulation_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of modulation, accepts "step" or "abs_sine (the default).

	pr_mean_weekend_factor (float [https://docs.python.org/3/library/functions.html#float]) – Sets the prior mean of the factor [image: f_w] by which weekends are counted.

	pr_sigma_weekend_factor (float [https://docs.python.org/3/library/functions.html#float]) – Sets the prior sigma of the factor [image: f_w] by which weekends are counted.

	week_end_days (tuple of ints) – The days counted as weekend if week_modulation_type is "step"

	model (Cov19Model) – if none, it is retrieved from the context

	save_in_trace (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (default) the new_cases are saved in the trace.

	Returns

	new_cases (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable])

	
covid19_inference.model.make_change_point_RVs(change_points_list, pr_median_lambda_0, pr_sigma_lambda_0=1, model=None)

	
	Parameters

	
	priors_dict –

	change_points_list –

	model –

	
covid19_inference.model.lambda_t_with_sigmoids(change_points_list, pr_median_lambda_0, pr_sigma_lambda_0=0.5, model=None)

	
	Parameters

	
	change_points_list –

	pr_median_lambda_0 –

	pr_sigma_lambda_0 –

	model (Cov19Model) – if none, it is retrieved from the context

	
covid19_inference.model.hierarchical_normal(name, name_sigma, pr_mean, pr_sigma, len_L2, w=1.0, error_fact=2.0, error_cauchy=True)

	Implements an hierarchical normal model:

[image: x_\text{L1} &= Normal(\text{pr_mean}, \text{pr_sigma})\\ y_{i, \text{L2}} &= Normal(x_\text{L1}, \sigma_\text{L2})\\ \sigma_\text{L2} &= HalfCauchy(\text{error_fact} \cdot \text{pr_sigma})]

It is however implemented in a non-centered way, that the second line is changed to:

[image: y_{i, \text{L2}} &= x_\text{L1} + Normal(0,1) \cdot \sigma_\text{L2}]

See for example https://arxiv.org/pdf/1312.0906.pdf

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name under which [image: x_\text{L1}] and [image: y_\text{L2}] saved in the trace. '_L1' and '_L2'
is appended

	name_sigma (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name under which [image: \sigma_\text{L2}] saved in the trace. '_L2' is appended.

	pr_mean (float [https://docs.python.org/3/library/functions.html#float]) – Prior mean of [image: x_\text{L1}]

	pr_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Prior sigma for [image: x_\text{L1}] and (muliplied by error_fact) for [image: \sigma_\text{L2}]

	len_L2 (int [https://docs.python.org/3/library/functions.html#int]) – length of [image: y_\text{L2}]

	error_fact (float [https://docs.python.org/3/library/functions.html#float]) – Factor by which pr_sigma is multiplied as prior for sigma_text{L2}

	error_cauchy (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, a [image: HalfNormal] distribution is used for [image: \sigma_\text{L2}] instead of [image: HalfCauchy]

	Returns

	
	y (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – the random variable [image: y_\text{L2}]

	x (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) – the random variable [image: x_\text{L1}]

	
covid19_inference.model.make_prior_I(lambda_t_log, mu, pr_median_delay, pr_sigma_I_begin=2, n_data_points_used=5, model=None)

	Builds the prior for I begin by solving the SIR differential from the first data backwards. This decorrelates the
I_begin from the lambda_t at the beginning, allowing a more efficient sampling. The example_one_bundesland runs
about 30% faster with this prior, instead of a HalfCauchy.

	Parameters

	
	lambda_t_log (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) –

	mu (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable]) –

	pr_median_delay (float [https://docs.python.org/3/library/functions.html#float]) –

	pr_sigma_I_begin (float [https://docs.python.org/3/library/functions.html#float]) –

	n_data_points_used (int [https://docs.python.org/3/library/functions.html#int]) –

	model (Cov19Model) – if none, it is retrieved from the context

	Returns

	I_begin (TensorVariable [http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.TensorVariable])

Data Retrieval

Table of Contents

	Data Retrieval

	Utility

	Johns Hops University

	Robert Koch Institute

	Robert Koch Institute situation reports

	Google

	Our World in Data

	Base Retrieval Class

Utility

	
covid19_inference.data_retrieval.retrieval.set_data_dir(fname=None, permissions=None)

	Set the global variable _data_dir. New downloaded data is placed there.
If no argument provided we try the default tmp directory.
If permissions are not provided, uses defaults if fname is in user folder.
If not in user folder, tries to set 777.

	
covid19_inference.data_retrieval.retrieval.backup_instances(trace=None, model=None, fname='latest_')

	helper to save or load trace and model instances.
loads from fname if provided traces and model variables are None,
else saves them there.

Johns Hops University

	
class covid19_inference.data_retrieval.JHU(auto_download=False)

	This class can be used to retrieve and filter the dataset from the online repository of the coronavirus visual dashboard operated
by the Johns Hopkins University [https://coronavirus.jhu.edu/].

	Features
	
	download all files from the online repository of the coronavirus visual dashboard operated by the Johns Hopkins University.

	filter by deaths, confirmed cases and recovered cases

	filter by country and state

	filter by date

Example

jhu = cov19.data_retrieval.JHU()
jhu.download_all_available_data()

#Acess the data by
jhu.data
#or
jhu.get_new("confirmed","Italy")
jhu.get_total(filter)

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with jhu specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main urls (self.url_csv) which was set on initialization of
this class.
If this fails it downloads from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_total_confirmed_deaths_recovered(country: str = None, state: str = None, begin_date: datetime.datetime = None, end_date: datetime.datetime = None)

	Retrieves all confirmed, deaths and recovered cases from the Johns Hopkins University dataset as a DataFrame with datetime index.
Can be filtered by country and state, if only a country is given all available states get summed up.

	Parameters

	
	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the country (the “Country/Region” column), can be None if the whole summed up data is wanted (why would you do this?)

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the state (the “Province/State” column), can be None if country is set or the whole summed up data is wanted

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame

	
get_new(value='confirmed', country: str = None, state: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Retrieves all new cases from the Johns Hopkins University dataset as a DataFrame with datetime index.
Can be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the country (the “Country/Region” column), can be None

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the state (the “Province/State” column), can be None

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with new cases and the date as index

	
get_total(value='confirmed', country: str = None, state: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Retrieves all total/cumulative cases from the Johns Hopkins University dataset as a DataFrame with datetime index.
Can be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the country (the “Country/Region” column), can be None

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the state (the “Province/State” column), can be None

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with total/cumulative cases and the date as index

	
filter_date(df, begin_date: datetime.datetime = None, end_date: datetime.datetime = None)

	Returns give dataframe between begin and end date. Dataframe has to have a datetime index.

	Parameters

	
	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – First day that should be filtered

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – Last day that should be filtered

	Returns

	pandas.DataFrame

	
get_possible_countries_states()

	Can be used to get a list with all possible states and coutries.

	Returns

	pandas.DataFrame in the format

Robert Koch Institute

	
class covid19_inference.data_retrieval.RKI(auto_download=False)

	This class can be used to retrieve and filter the dataset from the Robert Koch Institute Robert Koch Institute [https://www.rki.de/].
The data gets retrieved from the arcgis [https://www.arcgis.com/sharing/rest/content/items/f10774f1c63e40168479a1feb6c7ca74/data] dashboard.

	Features
	
	download the full dataset

	filter by date

	filter by bundesland

	filter by recovered, deaths and confirmed cases

Example

rki = cov19.data_retrieval.RKI()
rki.download_all_available_data()

#Acess the data by
rki.data
#or
rki.get_new("confirmed","Sachsen")
rki.get_total(filter)

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with rki specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_total(value='confirmed', bundesland: str = None, landkreis: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None, date_type: str = 'date')

	Gets all total confirmed cases for a region as dataframe with date index. Can be filtered with multiple arguments.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	bundesland (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for Germany

	landkreis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for the region (bundesland)

	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – initial date, if no value is provided it will use the first possible date

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date, if no value is provided it will use the most recent possible date

	date_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of date to use: reported date ‘date’ (Meldedatum in the original dataset), or symptom date ‘date_ref’ (Refdatum in the original dataset)

	Returns

	pandas.DataFrame

	
get_new(value='confirmed', bundesland: str = None, landkreis: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None, date_type: str = 'date')

	Retrieves all new cases from the Robert Koch Institute dataset as a DataFrame with datetime index.
Can be filtered by value, bundesland and landkreis, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	bundesland (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for Germany

	landkreis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for the region (bundesland)

	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used,
if none is given could yield errors

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with daily new confirmed and the date as index

	
filter(data_begin: datetime.datetime = None, data_end: datetime.datetime = None, variable='confirmed', date_type='date', level=None, value=None)

	Filters the obtained dataset for a given time period and returns an array ONLY containing only the desired variable.

	Parameters

	
	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – initial date, if no value is provided it will use the first possible date

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date, if no value is provided it will use the most recent possible date

	variable (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of variable to return
possible types are:
“confirmed” : cases (default)
“AnzahlTodesfall” : deaths
“AnzahlGenesen” : recovered

	date_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of date to use: reported date ‘date’ (Meldedatum in the original dataset), or symptom date ‘date_ref’ (Refdatum in the original dataset)

	level (str [https://docs.python.org/3/library/stdtypes.html#str], optional) –
	possible strings are:
	”None” : return data from all Germany (default)
“Bundesland” : a state
“Landkreis” : a region

	value (None [https://docs.python.org/3/library/constants.html#None], optional) – string of the state/region
e.g. “Sachsen”

	Returns

	pd.DataFrame – array with ONLY the requested variable, in the requested range. (one dimensional)

	
filter_all_bundesland(begin_date: datetime.datetime = None, end_date: datetime.datetime = None, variable='confirmed', date_type='date')

	Filters the full RKI dataset

	Parameters

	
	df (DataFrame) – RKI dataframe, from get_rki()

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – initial date to return

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – last date to return

	variable (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of variable to return: cases (“AnzahlFall”), deaths (“AnzahlTodesfall”), recovered (“AnzahlGenesen”)

	date_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of date to use: reported date ‘date’ (Meldedatum in the original dataset), or symptom date ‘date_ref’ (Refdatum in the original dataset)

	Returns

	pd.DataFrame – DataFrame with datetime dates as index, and all German regions (bundesländer) as columns

Robert Koch Institute situation reports

	
class covid19_inference.data_retrieval.RKIsituationreports(auto_download=False)

	As mentioned by Matthias Linden, the daily situation reports have more available data.
This class retrieves this additional data from Matthias website and parses it into the format we use i.e. a datetime index.

Interesting new data is for example ICU cases, deaths and recorded symptoms. For now one can look at the data by running

Example

rki_si_re = cov19.data_retrieval.RKIsituationreports(True)
print(rki_si_re.data)

Todo

Filter functions for ICU, Symptoms and maybe even daily new cases for the respective categories.

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with rki situation reports specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

Google

	
class covid19_inference.data_retrieval.GOOGLE(auto_download=False)

	This class can be used to retrieve the mobility dataset from
Google [https://coronavirus.jhu.edu/].

Example

gl = cov19.data_retrieval.GOOGLE()
gl.download_all_available_data()

#Acess the data by
gl.data
#or
gl.get_changes(filter)

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with google specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_changes(country: str, state: str = None, region: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Returns a dataframe with the relative changes in mobility to a baseline, provided by google.
They are separated into “retail and recreation”, “grocery and pharmacy”, “parks”, “transit”, “workplaces” and “residental”.
Filterable for country, state and region and date.

	Parameters

	
	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – Selected country for the mobility data.

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – State for the selected data if no value is selected the whole country is chosen

	region (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Region for the selected data if no value is selected the whole region/country is chosen

	data_end (data_begin,) – Filter for the desired time period

	Returns

	pandas.DataFrame

	
get_possible_counties_states_regions()

	Can be used to obtain all different possible countries with there corresponding possible states and regions.

	Returns

	pandas.DataFrame

Our World in Data

	
class covid19_inference.data_retrieval.OWD(auto_download=False)

	This class can be used to retrieve the testings dataset from
Our World in Data [https://ourworldindata.org/coronavirus].

Example

owd = cov19.data_retrieval.OWD()
owd.download_all_available_data()

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with google specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_possible_countries()

	Can be used to obtain all different possible countries in the dataset.

	Returns

	pandas.DataFrame

	
get_total(value='tests', country=None, data_begin=None, data_end=None)

	Retrieves all new cases from the Our World in Data dataset as a DataFrame with datetime index.
Can be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “tests”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the country

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with new cases and the date as index

	
get_new(value='tests', country=None, data_begin=None, data_end=None)

	Retrieves all new cases from the Our World in Data dataset as a DataFrame with datetime index.
casesn be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “tests”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the country

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with new cases and the date as index

Base Retrieval Class

	
class covid19_inference.data_retrieval.retrieval.Retrieval(name, url_csv, fallbacks, update_interval=None, **kwargs)

	Each source class should inherit this base retrieval class, it streamlines alot
of base functions. It manages downloads, multiple fallbacks and local backups
via timestamp. At init of the parent class the Retrieval init should be called
with the following arguments, these get saved as attributes.

An example for the usage can be seen in the _Google, _RKI and _JHU source files.

	
__init__(name, url_csv, fallbacks, update_interval=None, **kwargs)

	
	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name for the Parent class, mainly used for the local file backup.

	url_csv (str [https://docs.python.org/3/library/stdtypes.html#str]) – The url to the main dataset as csv, if an empty string if supplied the fallback routines get used.

	fallbacks (array) – Fallbacks can be filepaths to local or online sources
or even methods defined in the parent class.

	update_interval (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – If the local file is older than the update_interval it gets updated once the
download all function is called.

	
_download_csv_from_source(filepath, **kwargs)

	Uses pandas read csv to download the csv file.
The possible kwargs can be seen in the pandas documentation [https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv].

These kwargs can vary for the different parent classes and should be defined there!

	filepathstr
	Full path to the desired csv file

	Returns

	bool – True if the retrieval was a success, False if it failed

	
_fallback_handler()

	Recursivly iterate over all fallbacks and try to execute subroutines depending on the
type of fallback.

	
_timestamp_local_old(force_local=False) → bool

	
	Get timestamp if it exists

	compare with the date today

	update if data is older than set intervall -> can be parent dependant

	
_save_to_local()

	Creates a local backup for the self.data pandas.DataFrame. And a timestamp for the source.

Plotting

	
covid19_inference.plotting.get_all_free_RVs_names(model)

	Returns the names of all free parameters of the model

	Parameters

	model (pm.Model instance) –

	Returns

	list – all variable names

	
covid19_inference.plotting.get_prior_distribution(model, x, varname)

	Given a model and variable name, get the prior that was used for modeling.

	Parameters

	
	model (pm.Model instance) –

	x (list [https://docs.python.org/3/library/stdtypes.html#list] or array) –

	varname (string) –

	Returns

	array – the prior distribution evaluated at x

	
covid19_inference.plotting.plot_hist(model, trace, ax, varname, colors=('tab:blue', 'tab:orange'), bins=50)

	Plots one histogram of the prior and posterior distribution of the variable varname.

	Parameters

	
	model (pm.Model instance) –

	trace (trace of the model) –

	ax (matplotlib.axes instance) –

	varname (string) –

	colors (list with 2 colornames) –

	bins (number or array) – passed to np.hist

	Returns

	None

	
covid19_inference.plotting.plot_cases(trace, new_cases_obs, date_begin_sim, diff_data_sim, start_date_plot=None, end_date_plot=None, ylim=None, week_interval=None, colors=('tab:blue', 'tab:orange'), country='Germany')

	Plots the new cases, the fit, forecast and lambda_t evolution

	Parameters

	
	trace (trace returned by model) –

	new_cases_obs (array) –

	date_begin_sim (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) –

	diff_data_sim (float [https://docs.python.org/3/library/functions.html#float]) – Difference in days between the begin of the simulation and the data

	start_date_plot (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) –

	end_date_plot (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) –

	ylim (float [https://docs.python.org/3/library/functions.html#float]) – the maximal y value to be plotted

	week_interval (int [https://docs.python.org/3/library/functions.html#int]) – the interval in weeks of the y ticks

	colors (list with 2 colornames) –

	Returns

	figure, axes

Variables saved in the trace

The trace by default contains the following parameters in the
SIR/SEIR hierarchical model. XXX denotes a number.

	Name in trace

	Dimensions

	Created by function

	lambda_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	lambda_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs

	sigma_lambda_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_day_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_day_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs

	sigma_transient_day_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_len_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_len_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs

	sigma_transient_len_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	delay_L1

	samples

	delay_cases

	delay_L2

	samples x regions

	delay_cases

	sigma_delay_L2

	samples

	delay_cases

	weekend_factor_L1

	samples

	week_modulation

	weekend_factor_L2

	samples x regions

	week_modulation

	sigma_weekend_factor_L2

	samples

	week_modulation

	offset_modulation

	samples

	week_modulation

	new_cases_raw

	samples x time x regions

	week_modulation

	mu

	samples

	SIR/SEIR

	I_begin

	samples x regions

	SIR/SEIR

	new_cases

	samples x time x regions

	SIR/SEIR

	sigma_obs

	samples x regions

	SIR/SEIR

	new_E_begin

	samples x 11 x regions

	SEIR

	median_incubation_L1

	samples

	SEIR

	median_incubation_L2

	samples x regions

	SEIR

	sigma_median_incubation_L2

	samples

	SEIR

For the non-hierchical model, variables with _L2 suffixes are missing, and _L1 suffixes
are removed from the name.

Contributing

We always welcome contributions. Here we gather some guidelines
to make the process as smooth as possible.

Beginning

To see where help is needed, go to the issues page on Github. If you want to
begin on an issue, make a comment below and begin a draft pull request:
https://github.blog/2019-02-14-introducing-draft-pull-requests/ You can link the
pull request on the right side of the commit to it.

When you have
finished working on the issue, change it to a regular pull request. Check that
there are no conflicts to the current master
(https://www.digitalocean.com/community/tutorials/how-to-rebase-and-update-a-pull-request)

Code formatting

We use black https://github.com/psf/black as automatic code formatter.
Please run your code through it before you open a pull request.

We do not check for formatting in the testing (travis) but recommend to set up black as a pre-commit hook [https://black.readthedocs.io/en/stable/version_control_integration.html].

conda install -c conda-forge pre-commit
pre-commit install

Try to stick to PEP 8 [https://www.python.org/dev/peps/pep-0008/].
You can use type annotations [https://www.python.org/dev/peps/pep-0484/]
if you want, but it is not necessary or encouraged.

Testing

We use travis and pytest. To check your changes locally:

python -m pytest --log-level=INFO --log-cli-level=INFO

It would be great if anything that is added to the code-base has an according test in the tests folder. We are not there yet, but it is on the todo. Be encouraged to add tests :)

Documentation

The documentation is built using Sphinx from the docstrings. To test it before
submitting, navigate with a terminal to the docs/ directory. Install if necessary
the packages listed in piprequirements.txt run make html. The documentation
can then be accessed in docs/_build/html/index.html. As an example you can
look at the documentation of covid19_inference.model.SIR()

Debugging

This is some pointer to help debugging models and sampling issues

General approach for nans/infs during sampling

The idea of this approach is to sample from the prior and then run the model. If the
log likelihood is then -inf, there is a problem, and the output of the theano functions is
inspected.

Sample from prior:

from pymc3.util import (
 get_untransformed_name,
 is_transformed_name)

varnames = list(map(str, model.vars))

for name in varnames:
 if is_transformed_name(name):
 varnames.append(get_untransformed_name(name))

with model:
 points = pm.sample_prior_predictive(var_names = varnames)
 points_list = []
 for i in range(len(next(iter(points.values())))):
 point_dict = {}
 for name, val in points.items():
 point_dict[name] = val[i]
 points_list.append(point_dict)

points_list is a list of the starting points for the model, sampled from the prior.
Then to run the model and print the log-likelihood:

fn = model.fn(model.logpt)

for point in points_list[:]:
 print(fn(point))

To monitor the output and save it in a file (for use in ipython).
Learned from:
http://deeplearning.net/software/theano/tutorial/debug_faq.html#how-do-i-step-through-a-compiled-function

%%capture cap --no-stderr
def inspect_inputs(i, node, fn):
 print(i, node, "input(s) value(s):", [input[0] for input in fn.inputs],
 end='')

def inspect_outputs(i, node, fn):
 print(" output(s) value(s):", [output[0] for output in fn.outputs])

fn_monitor = model.fn(model.logpt,
 mode=theano.compile.MonitorMode(
 pre_func=inspect_inputs,
 post_func=inspect_outputs).excluding(
 'local_elemwise_fusion', 'inplace'))

fn = model.fn(model.logpt)

for point in points_list[:]:
 if fn(point) < -1e10:
 print(fn_monitor(point))
 break

In a new cell:

with open('output.txt', 'w') as f:
 f.write(cap.stdout)

Then one can open output.txt in a text editor, and follow from where infs or nans come from
by following the inputs and outputs up through the graph

Sampler: MCMC (Nuts)

Divergences

During sampling, a significant fraction of divergences are a sign that the sampler
doesn’t sample the whole posterior. In this case the model should be reparametrized.
See this tutorial for a typical example: https://docs.pymc.io/notebooks/Diagnosing_biased_Inference_with_Divergences.html

And these papers include some more details: https://pdfs.semanticscholar.org/7b85/fb48a077c679c325433fbe13b87560e12886.pdf
https://arxiv.org/pdf/1312.0906.pdf

Bad initial energy

This typically occurs when some distribution in the model can’t be evaluated at
the starting point of chain. Run this to see which distribution throws nans or infs:

for RV in model.basic_RVs:
 print(RV.name, RV.logp(model.test_point))

However, this is only evaluates the test_point. When PyMC3 starts sampling, it adds some jitter
around this test_point, which then could lead to nans. Run this to add jitter and then evaluate
the logp:

chains=4
for RV in model.basic_RVs:
 print(RV.name)

 for _ in range(chains):
 mean = {var: val.copy() for var, val in model.test_point.items()}
 for val in mean.values():
 val[...] += 2 * np.random.rand(*val.shape) - 1
 print(RV.logp(mean))

This code could potentially change in newer versions of PyMC3 (this is tested in 3.8).
Read the source code, to know which random jitter PyMC3 currently adds at beginning.

Nans occur during sampling

Run the sampler with the debug mode of Theano.

from theano.compile.nanguardmode import NanGuardMode
mode = NanGuardMode(nan_is_error=True, inf_is_error=False, big_is_error=False,
 optimizer='o1')
trace = pm.sample(mode=mode)

However this doesn’t lead to helpful messages if nans occur during gradient evaluations.

Sampler: Variational Inference

There exist some ways to track parameters during sampling. An example:

with model:
 advi = pm.ADVI()
 print(advi.approx.group)

 print(advi.approx.mean.eval())
 print(advi.approx.std.eval())

 tracker = pm.callbacks.Tracker(
 mean=advi.approx.mean.eval, # callable that returns mean
 std=advi.approx.std.eval # callable that returns std
)

 approx = advi.fit(100000, callbacks=[tracker],
 obj_optimizer=pm.adagrad_window(learning_rate=1e-3),)
 #total_grad_norm_constraint=10) #constrains maximal gradient, could help

 print(approx.groups[0].bij.rmap(approx.params[0].eval()))

 plt.plot(tracker['mean'])
 plt.plot(tracker['std'])

For the tracker, the order of the parameters is saved in:

approx.ordering.by_name

and the indices encoded there in the slc field.
To plot the mean value of a given parameter name, run:

plt.plot(np.array(tracker['mean'])[:, approx.ordering.by_name['name'].slc]

The debug mode is set with the following parameter:

from theano.compile.nanguardmode import NanGuardMode
mode = NanGuardMode(nan_is_error=True, inf_is_error=False, big_is_error=False,
 optimizer='o1')
approx = advi.fit(100000, callbacks=[tracker],
 fn_kwargs={'mode':mode})

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 covid19_inference	

 	
 	
 covid19_inference.data_retrieval.retrieval	

 	
 	
 covid19_inference.model	

 	
 	
 covid19_inference.plotting	

Index

 _
 | B
 | C
 | D
 | F
 | G
 | H
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | W

_

 	
 	__init__() (covid19_inference.data_retrieval.GOOGLE method)

 	(covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.retrieval.Retrieval method)

 	(covid19_inference.data_retrieval.RKI method)

 	(covid19_inference.data_retrieval.RKIsituationreports method)

 	
 	_download_csv_from_source() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_fallback_handler() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_save_to_local() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_timestamp_local_old() (covid19_inference.data_retrieval.retrieval.Retrieval method)

B

 	
 	backup_instances() (in module covid19_inference.data_retrieval.retrieval)

C

 	
 	Cov19Model (class in covid19_inference.model)

 	covid19_inference (module)

 	
 	covid19_inference.data_retrieval.retrieval (module)

 	covid19_inference.model (module)

 	covid19_inference.plotting (module)

D

 	
 	delay_cases() (in module covid19_inference.model)

 	download_all_available_data() (covid19_inference.data_retrieval.GOOGLE method)

 	(covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.RKI method)

 	(covid19_inference.data_retrieval.RKIsituationreports method)

F

 	
 	filter() (covid19_inference.data_retrieval.RKI method)

 	
 	filter_all_bundesland() (covid19_inference.data_retrieval.RKI method)

 	filter_date() (covid19_inference.data_retrieval.JHU method)

G

 	
 	get_all_free_RVs_names() (in module covid19_inference.plotting)

 	get_changes() (covid19_inference.data_retrieval.GOOGLE method)

 	get_new() (covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.RKI method)

 	get_possible_counties_states_regions() (covid19_inference.data_retrieval.GOOGLE method)

 	get_possible_countries() (covid19_inference.data_retrieval.OWD method)

 	
 	get_possible_countries_states() (covid19_inference.data_retrieval.JHU method)

 	get_prior_distribution() (in module covid19_inference.plotting)

 	get_total() (covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.RKI method)

 	get_total_confirmed_deaths_recovered() (covid19_inference.data_retrieval.JHU method)

 	GOOGLE (class in covid19_inference.data_retrieval)

H

 	
 	hierarchical_normal() (in module covid19_inference.model)

J

 	
 	JHU (class in covid19_inference.data_retrieval)

L

 	
 	lambda_t_with_sigmoids() (in module covid19_inference.model)

M

 	
 	make_change_point_RVs() (in module covid19_inference.model)

 	
 	make_prior_I() (in module covid19_inference.model)

 	modelcontext() (in module covid19_inference.model)

O

 	
 	OWD (class in covid19_inference.data_retrieval)

P

 	
 	plot_cases() (in module covid19_inference.plotting)

 	
 	plot_hist() (in module covid19_inference.plotting)

R

 	
 	Retrieval (class in covid19_inference.data_retrieval.retrieval)

 	
 	RKI (class in covid19_inference.data_retrieval)

 	RKIsituationreports (class in covid19_inference.data_retrieval)

S

 	
 	SEIR() (in module covid19_inference.model)

 	set_data_dir() (in module covid19_inference.data_retrieval.retrieval)

 	
 	SIR() (in module covid19_inference.model)

 	student_t_likelihood() (in module covid19_inference.model)

W

 	
 	week_modulation() (in module covid19_inference.model)

 nav.xhtml

 Table of Contents

 		
 Indices and tables

 		
 Getting Started

 		
 Disclaimer

 		
 Model

 		
 Data Retrieval

 		
 Plotting

 		
 Variables saved in the trace

 		
 Contributing

 		
 Debugging

_static/plus.png

_static/file.png

_static/minus.png

