

Overview

	Getting Started

	Examples

	Disclaimer

Reference

	Model

	Data Retrieval

	Sampling

	Plotting

	Variables saved in the trace

For developpers

	Contributing

	Debugging

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Installation

There exist three different possibilities to run the models:

	Clone the repository, with the latest release:

git clone --branch v0.1.8 https://github.com/Priesemann-Group/covid19_inference

	Install the module via pip

pip install git+https://github.com/Priesemann-Group/covid19_inference.git@v0.1.8

3. Run the notebooks directly in Google Colab. At the top of the notebooks files
there should be a symbol which opens them directly in a Google Colab instance.

First Steps

To get started, we recommend to look at one of the currently two example notebooks:

	
	SIR model with one german state [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_one_bundesland.ipynb]
	This model is similar to the one discussed in our paper: Inferring COVID-19 spreading rates and potential change points for case number forecasts [https://arxiv.org/abs/2004.01105].
The difference is that the delay between infection and report is now lognormal distributed and not
fixed.

	
	Hierarchical model of the German states [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/example_bundeslaender.ipynb]
	This builds a hierarchical Bayesian model of the states of Germany. Caution, seems to be currently broken!

We can for example recommend the following articles about Bayesian modeling:

As a introduction to Bayesian statistics and the python package (PyMC3) that we use:
https://docs.pymc.io/notebooks/api_quickstart.html

This is a good post about hierarchical Bayesian models in general:
https://statmodeling.stat.columbia.edu/2014/01/21/everything-need-know-bayesian-statistics-learned-eight-schools/

Examples

We supply a number of examples which can be found in the scripts [https://github.com/Priesemann-Group/covid19_inference/tree/master/scripts]
folder of the GitHub repository.

These examples are given as Python files and interactive IPython notebooks. The Python files get automatically converted into IPython notebooks for easier use with Google Colab.
The conversion is done by a slightly modified version of the python2jupyter module [https://github.com/remykarem/python2jupyter], which can be found here [https://github.com/pSpitzner/python2jupyter].

For starters the most useful examples are the non hierarchical one bundesland example [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/interactive/example_one_bundesland.ipynb] and the hierarchical analysis of the bundeslaender [https://github.com/Priesemann-Group/covid19_inference/blob/master/scripts/interactive/example_bundeslaender.ipynb].

Disclaimer

We evaluate the data provided by the John Hopkins University link [https://github.com/CSSEGISandData/COVID-19].
We exclude any liability with regard to the quality and accuracy of the data used, and also with regard to the correctness of the statistical analysis. The evaluation of the different growth phases represents solely our personal opinion.

The number of cases reported may be significantly lower than the number of people actually infected. Also, we must point out that week-ends and changes in the test system may lead to fluctuations in reported cases that have no equivalent in actual case numbers.

Certainly, at this stage all statistical predictions are subject to great uncertainty because the general trends of the epidemic are not yet clear. In any case, the statistical trends that we interpret from the data are only suitable for predictions if the measures taken by the government and authorities to contain the pandemic remain in force and are being followed by the population. We must also point out that, even if the statistics indicate that the epidemic is under control, we may at any time see a resurgence of infection figures until the disease is eradicated worldwide.

Model

If you are familiar with pymc3, then looking at the example below should explain
how our model works. Otherwise, here is a quick overview:

	First, we have to create an instance of the base class (that is derived from pymc3s model class). It has some convenient properties to get the range of the data, simulation length and so forth.

	We then add details that base model. They correspond to the actual (physical) model features, such as the change points, the reporting delay and the week modulation.

	Every feature has its own function that takes in arguments to set prior
assumptions.

	Sometimes they also take in input (data, reported cases …) but none of the
functions perform any actual modifications on the data. They only tell pymc3 what
it is supposed to do during the sampling.

	None of our functions actually modifies any data. They rather define ways how
pymc3 should modify data during the sampling.

	Most of the feature functions add variables to the pymc3.trace, see the function arguments that start with name_.

	In pymc3 it is common to use a context, as we also do in the example. Everything within the block with cov19.model.Cov19Model(**params_model) as this_model: automatically applies to this_model. Alternatively, you could provide a keyword to each function model=this_model.

Example

import datetime

import pymc3 as pm
import numpy as np
import covid19_inference as cov19

limit the data range
bd = datetime.datetime(2020, 3, 2)

download data
jhu = cov19.data_retrieval.JHU(auto_download=True)
new_cases = jhu.get_new(country="Germany", data_begin=bd)

set model parameters
params_model = dict(
 new_cases_obs=new_cases,
 data_begin=bd,
 fcast_len=28,
 diff_data_sim=16,
 N_population=83e6,
)

change points like in the paper
change_points = [
 dict(pr_mean_date_transient=datetime.datetime(2020, 3, 9)),
 dict(pr_mean_date_transient=datetime.datetime(2020, 3, 16)),
 dict(pr_mean_date_transient=datetime.datetime(2020, 3, 23)),
]

create model instance and add details
with cov19.model.Cov19Model(**params_model) as this_model:
 # apply change points, lambda is in log scale
 lambda_t_log = cov19.model.lambda_t_with_sigmoids(
 pr_median_lambda_0=0.4,
 pr_sigma_lambda_0=0.5,
 change_points_list=change_points,
)

 # prior for the recovery rate
 mu = pm.Lognormal(name="mu", mu=np.log(1 / 8), sigma=0.2)

 # new Infected day over day are determined from the SIR model
 new_I_t = cov19.model.SIR(lambda_t_log, mu)

 # model the reporting delay, our prior is ten days
 new_cases_inferred_raw = cov19.model.delay_cases(
 cases=new_I_t,
 pr_mean_of_median=10,
)

 # apply a weekly modulation, fewer reports during weekends
 new_cases_inferred = cov19.model.week_modulation(new_cases_inferred_raw)

 # set the likeliehood
 cov19.model.student_t_likelihood(new_cases_inferred)

run the sampling
trace = pm.sample(model=this_model, tune=50, draws=10, init="advi+adapt_diag")

Table of Contents

	Model

	Example

	Model Base Class

	Compartmental models

	Likelihood

	Spreading Rate

	Delay

	Week modulation

	Model utilities

Model Base Class

	
class covid19_inference.model.Cov19Model(new_cases_obs, data_begin, fcast_len, diff_data_sim, N_population, data_end=None, name='', model=None, shifted_cases=True)

	Abstract base class for the dynamic model of covid-19 propagation.
Derived from pymc3.Model.

Parameters below are passed to the constructor.

Attributes (Variables) are available after creation and can be accessed from
every instance. Some background:

	The simulation starts diff_data_sim days before the data.

	The data has a certain length, on which the inference is based. This
length is given by new_cases_obs.

	After the inference, a forecast takes of length fcast_len takes
place, starting on the day after the last data point in new_cases_obs.

	In total, traces produced by a model run have the length
sim_len = diff_data_sim + data_len + fcast_len

	Date ranges include both boundaries. For example, if data_begin is March
1 and data_end is March 3 then data_len will be 3.

	Parameters

	
	new_cases_obs (1 or 2d array) – If the array is two-dimensional, an hierarchical model will be constructed.
First dimension is then time, the second the region/country.

	data_begin (datatime.datetime) – Date of the first data point

	fcast_len (int [https://docs.python.org/3/library/functions.html#int]) – Number of days the simulations runs longer than the data

	diff_data_sim (int [https://docs.python.org/3/library/functions.html#int]) – Number of days the simulation starts earlier than the data. Should be
significantly longer than the delay between infection and report of cases.

	N_population (number or 1d array) – Number of inhabitance in region, needed for the S(E)IR model. Is ideally 1
dimensional if new_cases_obs is 2 dimensional

	name (string) – suffix appended to the name of random variables saved in the trace

	model – specify a model, if this one should expand another

	shifted_cases (bool [https://docs.python.org/3/library/functions.html#bool]) – when enabled (True), interprets short intervals of zero cases as days,
where no reporting happens and adds model cases to next non-zero-case day

	Variables

	
	new_cases_obs (1 or 2d array) – as passed during construction

	data_begin (datatime.datetime) – date of the first data point in the data

	data_end (datatime.datetime) – date of the last data point in the data

	sim_begin (datatime.datetime) – date at which the simulation begins

	sim_end (datatime.datetime) – date at which the simulation ends (should match fcast_end)

	fcast_begin (datatime.datetime) – date at which the forecast starts (should be one day after data_end)

	fcast_end (datatime.datetime) – data at which the forecast ends

	data_len (int [https://docs.python.org/3/library/functions.html#int]) – total number of days in the data

	sim_len (int [https://docs.python.org/3/library/functions.html#int]) – total number of days in the simulation

	fcast_len (int [https://docs.python.org/3/library/functions.html#int]) – total number of days in the forecast

	diff_data_sim (int [https://docs.python.org/3/library/functions.html#int]) – difference in days between the simulation begin and the data begin.
The simulation starting time is usually earlier than the data begin.

Example

with Cov19Model(**params) as model:
 # Define model here

	
property untransformed_freeRVs

	Returns the names of all free parameters of the model, usefull for plotting!

	Returns

	list – all variable names

Compartmental models

SIR — susceptible-infected-recovered

	
covid19_inference.model.SIR(lambda_t_log, mu, name_new_I_t='new_I_t', name_I_begin='I_begin', name_I_t='I_t', name_S_t='S_t', pr_I_begin=100, model=None, return_all=False)

	Implements the susceptible-infected-recovered model.

	Parameters

	
	lambda_t_log (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the logarithm of the spreading rate, 1 or 2-dimensional. If 2-dimensional the first
dimension is time.

	mu (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – the recovery rate [image: \mu], typically a random variable. Can be 0 or 1-dimensional. If 1-dimensional,
the dimension are the different regions.

	name_new_I_t (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the new_I_t variable

	name_I_begin (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the I_be gin variable

	name_I_t (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the I_t variable, set to None to avoid adding as trace variable.

	name_S_t (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the S_t variable, set to None to avoid adding as trace variable.

	pr_I_begin (float or array_like or Variable) – Prior beta of the Half-Cauchy distribution of [image: I(0)].
if type is at.Constant, I_begin will not be inferred by pymc3

	model (Cov19Model) – if none, it is retrieved from the context

	return_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, returns name_new_I_t, name_I_t, name_S_t otherwise returns only name_new_I_t

	Returns

	
	new_I_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the number daily newly infected persons.

	I_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the infected (if return_all set to True)

	S_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the susceptible (if return_all set to True)

More Details

[image: I_{new}(t) &= \lambda_t I(t-1) \frac{S(t-1)}{N} \\ S(t) &= S(t-1) - I_{new}(t) \\ I(t) &= I(t-1) + I_{new}(t) - \mu I(t)]

The prior distributions of the recovery rate [image: \mu]
and [image: I(0)] are set to

[image: \mu &\sim \text{LogNormal}\left[\log(\text{pr_median_mu}), \text{pr_sigma_mu} \right] \\ I(0) &\sim \text{HalfCauchy}\left[\text{pr_beta_I_begin} \right]]

SEIR-like — susceptible-exposed-infected-recovered

	
covid19_inference.model.SEIR(lambda_t_log, mu, name_new_I_t='new_I_t', name_new_E_t='new_E_t', name_I_t='I_t', name_S_t='S_t', name_I_begin='I_begin', name_new_E_begin='new_E_begin', name_median_incubation='median_incubation', pr_I_begin=100, pr_new_E_begin=50, pr_median_mu=0.125, pr_mean_median_incubation=4, pr_sigma_median_incubation=1, sigma_incubation=0.4, pr_sigma_mu=0.2, model=None, return_all=False)

	Implements a model similar to the susceptible-exposed-infected-recovered model.
Instead of a exponential decaying incubation period, the length of the period is
lognormal distributed.

	Parameters

	
	lambda_t_log (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the logarithm of the spreading rate, 1 or 2-dimensional. If 2-dimensional, the first
dimension is time.

	mu (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – the recovery rate [image: \mu], typically a random variable. Can be 0 or
1-dimensional. If 1-dimensional, the dimension are the different regions.

	name_new_I_t (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the new_I_t variable

	name_I_t (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the I_t variable

	name_S_t (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the S_t variable

	name_I_begin (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the I_begin variable

	name_new_E_begin (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the new_E_begin variable

	name_median_incubation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name under which the median incubation time is saved in the trace

	pr_I_begin (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior beta of the HalfCauchy
distribution of [image: I(0)].
if type is at.Variable, I_begin will be set to the provided prior as
a constant.

	pr_new_E_begin (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior beta of the HalfCauchy
distribution of [image: E(0)].

	pr_median_mu (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior for the median of the
Lognormal distribution of the
recovery rate [image: \mu].

	pr_mean_median_incubation – Prior mean of the Normal
distribution of the median incubation delay [image: d_{\text{incubation}}].
Defaults to 4 days [Nishiura2020], which is the median serial interval (the
important measure here is not exactly the incubation period, but the delay
until a person becomes infectious which seems to be about 1 day earlier as
showing symptoms).

	pr_sigma_median_incubation (number or None [https://docs.python.org/3/library/constants.html#None]) – Prior sigma of the Normal
distribution of the median incubation delay [image: d_{\text{incubation}}].
If None, the incubation time will be fixed to the value of
pr_mean_median_incubation instead of a random variable
Default is 1 day.

	sigma_incubation – Scale parameter of the Lognormal
distribution of the incubation time/ delay until infectiousness. The default
is set to 0.4, which is about the scale found in [Nishiura2020],
[Lauer2020].

	pr_sigma_mu (float [https://docs.python.org/3/library/functions.html#float] or array_like) – Prior for the sigma of the lognormal distribution of recovery rate
[image: \mu].

	model (Cov19Model) – if none, it is retrieved from the context

	return_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, returns name_new_I_t, name_new_E_t, name_I_t,
name_S_t otherwise returns only name_new_I_t

	Returns

	
	name_new_I_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the number daily newly infected persons.

	name_new_E_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the number daily newly exposed persons. (if return_all set to
True)

	name_I_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the infected (if return_all set to True)

	name_S_t (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – time series of the susceptible (if return_all set to True)

More Details

[image: E_{\text{new}}(t) &= \lambda_t I(t-1) \frac{S(t)}{N} \\ S(t) &= S(t-1) - E_{\text{new}}(t) \\ I_\text{new}(t) &= \sum_{k=1}^{10} \beta(k) E_{\text{new}}(t-k) \\ I(t) &= I(t-1) + I_{\text{new}}(t) - \mu I(t) \\ \beta(k) & = P(k) \sim \text{LogNormal}\left[\log(d_{\text{incubation}}), \text{sigma_incubation} \right]]

The recovery rate [image: \mu] and the incubation period is the same for all regions and follow respectively:

[image: P(\mu) &\sim \text{LogNormal}\left[\text{log(pr_median_mu), pr_sigma_mu} \right] \\ P(d_{\text{incubation}}) &\sim \text{Normal}\left[\text{pr_mean_median_incubation, pr_sigma_median_incubation} \right]]

The initial number of infected and newly exposed differ for each region and follow prior HalfCauchy distributions:

[image: E(t) &\sim \text{HalfCauchy}\left[\text{pr_beta_E_begin} \right] \:\: \text{for} \: t \in {-9, -8, ..., 0}\\ I(0) &\sim \text{HalfCauchy}\left[\text{pr_beta_I_begin} \right].]

References

	
	Nishiura2020(1,2)

	Nishiura, H.; Linton, N. M.; Akhmetzhanov, A. R.
Serial Interval of Novel Coronavirus (COVID-19) Infections.
Int. J. Infect. Dis. 2020, 93, 284–286. https://doi.org/10.1016/j.ijid.2020.02.060.

	
	Lauer2020

	Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J.
The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application.
Ann Intern Med 2020. https://doi.org/10.7326/M20-0504.

Likelihood

	
covid19_inference.model.student_t_likelihood(cases, name_student_t='_new_cases_studentT', name_sigma_obs='sigma_obs', pr_beta_sigma_obs=30, nu=4, offset_sigma=1, model=None, data_obs=None, sigma_shape=None)

	Set the likelihood to apply to the model observations (model.new_cases_obs)
We assume a StudentT distribution because it is robust against outliers [Lange1989].
The likelihood follows:

[image: P(\text{data_obs}) &\sim StudentT(\text{mu} = \text{new_cases_inferred}, sigma =\sigma, \text{nu} = \text{nu})\\ \sigma &= \sigma_r \sqrt{\text{new_cases_inferred} + \text{offset_sigma}}]

The parameter [image: \sigma_r] follows
a HalfCauchy prior distribution with parameter beta set by
pr_beta_sigma_obs. If the input is 2 dimensional, the parameter [image: \sigma_r] is different for every region,
this can be changed be using the sigma_shape Parameter.

	Parameters

	
	cases (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – The daily new cases estimated by the model.
Will be compared to the real world data data_obs.
One or two dimensonal array. If 2 dimensional, the first dimension is time
and the second are the regions/countries

	name_student_t – The name under which the studentT distribution is saved in the trace.

	name_sigma_obs – The name under which the distribution of the observable error is saved in the trace

	pr_beta_sigma_obs (float [https://docs.python.org/3/library/functions.html#float]) – The beta of the HalfCauchy prior distribution of [image: \sigma_r].

	nu (float [https://docs.python.org/3/library/functions.html#float]) – How flat the tail of the distribution is. Larger nu should make the model
more robust to outliers. Defaults to 4 [Lange1989].

	offset_sigma (float [https://docs.python.org/3/library/functions.html#float]) – An offset added to the sigma, to make the inference procedure robust. Otherwise numbers of
cases would lead to very small errors and diverging likelihoods. Defaults to 1.

	model – The model on which we want to add the distribution

	data_obs (array) – The data that is observed. By default it is model.new_cases_obs

	sigma_shape (int [https://docs.python.org/3/library/functions.html#int], array) – Shape of the sigma distribution i.e. the data error term.

	Returns

	None

References

	Lange1989(1,2)

	Lange, K., Roderick J. A. Little, & Jeremy M. G. Taylor. (1989).
Robust Statistical Modeling Using the t Distribution.
Journal of the American Statistical Association,
84(408), 881-896. doi:10.2307/2290063

Spreading Rate

	
covid19_inference.model.lambda_t_with_sigmoids(change_points_list, pr_median_lambda_0, pr_sigma_lambda_0=0.5, model=None, name_lambda_t='lambda_t', hierarchical=None, sigma_lambda_cp=None, sigma_lambda_week_cp=None, prefix_lambdas='', shape=None)

	Builds a time dependent spreading rate [image: \lambda_t] with change points. The change points are marked by a transient with a sigmoidal shape.

Todo

Add a bit more detailed documentation.

	Parameters

	
	change_points_list –

	pr_median_lambda_0 –

	pr_sigma_lambda_0 –

	model (Cov19Model) – if none, it is retrieved from the context

	Returns

	lambda_t_log

	
covid19_inference.model.uncorrelated_prior_I(lambda_t_log, mu, pr_median_delay, name_I_begin='I_begin', name_I_begin_ratio_log='I_begin_ratio_log', pr_sigma_I_begin=2, n_data_points_used=5, model=None)

	Builds the prior for I begin by solving the SIR differential from the first
data backwards. This decorrelates the I_begin from the lambda_t at the
beginning, allowing a more efficient sampling. The example_one_bundesland runs
about 30% faster with this prior, instead of a HalfCauchy.

	Parameters

	
	lambda_t_log (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – Description

	mu (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – Description

	pr_median_delay (float [https://docs.python.org/3/library/functions.html#float]) – Description

	name_I_begin (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description

	name_I_begin_ratio_log (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description

	pr_sigma_I_begin (float [https://docs.python.org/3/library/functions.html#float]) – Description

	n_data_points_used (int [https://docs.python.org/3/library/functions.html#int]) – Description

	model (Cov19Model) – if none, it is retrieved from the context

	lambda_t_log –

	mu –

	pr_median_delay –

	pr_sigma_I_begin –

	n_data_points_used –

	Returns

	I_begin (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable])

Delay

	
covid19_inference.model.delay_cases(cases, name_delay='delay', name_cases=None, name_width='delay-width', pr_mean_of_median=10, pr_sigma_of_median=0.2, pr_median_of_width=0.3, pr_sigma_of_width=None, model=None, len_input_arr=None, len_output_arr=None, diff_input_output=None, seperate_on_axes=True, num_seperated_axes=None, use_gamma=False)

	Convolves the input by a lognormal distribution, in order to model a delay:

	We have a kernel (a distribution) of delays, one realization of this kernel is
applied to each pymc3 sample.

	The kernel has a median delay D and a width that correspond to this one
sample. Doing the ensemble average over all samples and the respective
kernels, we get two distributions: one of the median delay D and one of the
width.

	The (normal) distribution of the median of D is specified using
pr_mean_of_median and pr_sigma_of_median.

	The (lognormal) distribution of the width of the kernel of D is specified
using pr_median_of_width and pr_sigma_of_width. If
pr_sigma_of_width is None, the width is fixed (skipping the second
distribution).

	Parameters

	
	cases (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – The input, typically the number of newly infected cases from the output of
SIR() or SEIR().

	name_delay (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name under which the delay is saved in the trace, suffixes and prefixes
are added depending on which variable is saved.
Default : “delay”

	name_cases (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The name under which the delayed cases are saved in the trace.
If None, no variable will be added to the trace.
Default: “delayed_cases”

	pr_mean_of_median (float [https://docs.python.org/3/library/functions.html#float]) – The mean of the normal distribution
which models the prior median of the
LogNormal delay kernel.
Default: 10.0 (days)

	pr_sigma_of_median (float [https://docs.python.org/3/library/functions.html#float]) – The standart devaiation of normal
distribution which models the prior median of the
LogNormal delay kernel.
Default: 0.2

	pr_median_of_width (float [https://docs.python.org/3/library/functions.html#float]) – The scale (width) of the LogNormal
delay kernel.
Default: 0.3

	pr_sigma_of_width (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Whether to put a prior distribution on the scale (width)
of the distribution of the delays, too.
If a number is provided, the scale of the delay kernel follows
a prior LogNormal distribution, with median
pr_median_scale_delay and scale pr_sigma_scale_delay.
Default: None, and no distribution is applied.

	model (Cov19Model or None) – The model to use.
Default: None, model is retrieved automatically from the context

	Other Parameters

	
	len_input_arr – Length of new_I_t. By default equal to model.sim_len. Necessary
because the shape of aesara tensors are not defined at when the graph is
built.

	len_output_arr (int) – Length of the array returned. By default it set to the length of the
cases_obs saved in the model plus the number of days of the forecast.

	diff_input_output (int) – Number of days the returned array begins later then the input. Should be
significantly larger than the median delay. By default it is set to the
model.diff_data_sim.

	seperate_on_axes (Bool) – This decides whether or not the delay is applied on every
axes separately. I.e. Different delay times for the different axes. If
None no axes is modelled separately!

	num_seperated_axes (int or None) – If you are not using separated axes, this is the number of axes.

	Returns

	delayed_cases (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – The delayed input [image: y_\text{delayed}(t)],
typically the daily number new cases that one expects to measure.

More Details

[image: y_\text{delayed}(t) &= \sum_{\tau=0}^T y_\text{input}(\tau) \text{LogNormal}\left[\log(\text{delay}), \text{pr_median_scale_delay} \right](t - \tau) \\ \log(\text{delay}) &= \text{Normal}\left[\log(\text{pr_sigma_delay}), \text{pr_sigma_delay} \right]]

The LogNormal distribution is a function evaluated at [image: t - \tau].

If the model is 2-dimensional (hierarchical), the [image: \log(\text{delay})] is hierarchically
modelled with the hierarchical_normal() function using the default parameters
except that the prior sigma of delay_L2 is HalfNormal distributed
(error_cauchy=False).

Week modulation

	
covid19_inference.model.week_modulation(cases, name_cases=None, name_weekend_factor='weekend_factor', name_offset_modulation='offset_modulation', week_modulation_type='abs_sine', pr_mean_weekend_factor=0.3, pr_sigma_weekend_factor=0.5, weekend_days=(6, 7), model=None)

	Adds a weekly modulation of the number of new cases:

[image: \text{new_cases} &= \text{new_cases_raw} \cdot (1-f(t))\,, \qquad\text{with}\\ f(t) &= f_w \cdot \left(1 - \left|\sin\left(\frac{\pi}{7} t- \frac{1}{2}\Phi_w\right)\right| \right),]

if week_modulation_type is "abs_sine" (the default). If week_modulation_type is "step", the
new cases are simply multiplied by the weekend factor on the days set by weekend_days

The weekend factor [image: f_w] follows a Lognormal distribution with
median pr_mean_weekend_factor and sigma pr_sigma_weekend_factor. It is hierarchically constructed if
the input is two-dimensional by the function hierarchical_normal() with default arguments.

The offset from Sunday [image: \Phi_w] follows a flat VonMises distribution
and is the same for all regions.

	Parameters

	
	cases (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – The input array of daily new cases, can be one- or two-dimensional

	name_cases (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None],) – The name under which to save the cases as a trace variable.
Default: None, cases are not stored in the trace.

	week_modulation_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of modulation, accepts "step" or "abs_sine (the default).

	pr_mean_weekend_factor (float [https://docs.python.org/3/library/functions.html#float], at.Variable) – Sets the prior mean of the factor [image: f_w] by which weekends are counted.

	pr_sigma_weekend_factor (float [https://docs.python.org/3/library/functions.html#float]) – Sets the prior sigma of the factor [image: f_w] by which weekends are counted.

	weekend_days (tuple of ints) – The days counted as weekend if week_modulation_type is "step"

	model (Cov19Model) – if none, it is retrieved from the context

	Returns

	new_cases (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable])

Model utilities

	
covid19_inference.model.utility.hierarchical_normal(pr_mean, pr_sigma, name_L1='delay_hc_L1', name_L2='delay_hc_L2', name_sigma='delay_hc_sigma', model=None, error_fact=2.0, error_cauchy=True, shape=None)

	Implements an hierarchical normal model:

[image: x_\text{L1} &= Normal(\text{pr_mean}, \text{pr_sigma})\\ y_{i, \text{L2}} &= Normal(x_\text{L1}, \sigma_\text{L2})\\ \sigma_\text{L2} &= HalfCauchy(\text{error_fact} \cdot \text{pr_sigma})]

It is however implemented in a non-centered way, that the second line is changed to:

[image: y_{i, \text{L2}} &= x_\text{L1} + Normal(0,1) \cdot \sigma_\text{L2}]

See for example https://arxiv.org/pdf/1312.0906.pdf

	Parameters

	
	name_L1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name under which [image: x_\text{L1}] is saved in the trace.

	name_L2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name under which [image: x_\text{L2}] is saved in the trace. The non-centered distribution in addition
saved with a suffix _raw added.

	name_sigma (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name under which [image: \sigma_\text{L2}] is saved in the trace.

	pr_mean (float [https://docs.python.org/3/library/functions.html#float]) – Prior mean of [image: x_\text{L1}]

	pr_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Prior sigma for [image: x_\text{L1}] and (muliplied by error_fact) for [image: \sigma_\text{L2}]

	len_L2 (int [https://docs.python.org/3/library/functions.html#int]) – length of [image: y_\text{L2}]

	error_fact (float [https://docs.python.org/3/library/functions.html#float]) – Factor by which pr_sigma is multiplied as prior for sigma_text{L2}

	error_cauchy (bool [https://docs.python.org/3/library/functions.html#bool]) – if False, a [image: HalfNormal] distribution is used for [image: \sigma_\text{L2}] instead of [image: HalfCauchy]

	Returns

	
	y (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – the random variable [image: y_\text{L2}]

	x (TensorVariable [https://aesara.readthedocs.io/en/latest/library/tensor/basic.html#aesara.tensor.TensorVariable]) – the random variable [image: x_\text{L1}]

	
covid19_inference.model.utility.tt_lognormal(x, mu, sigma)

	Calculates a lognormal pdf for integer spaced x input.

	
covid19_inference.model.utility.tt_gamma(x, mu=None, sigma=None, alpha=None, beta=None)

	Calculates a gamma distribution pdf for integer spaced x input. Parametrized similarly to
Gamma

Data Retrieval

Table of Contents

	Data Retrieval

	Utility

	Johns Hops University

	Robert Koch Institute

	Robert Koch Institute situation reports

	Google

	Our World in Data

	Financial times

	Oxford COVID-19 Government Response Tracker

	Base Retrieval Class

Utility

	
covid19_inference.data_retrieval.retrieval.set_data_dir(fname=None, permissions=None)

	Set the global variable _data_dir. New downloaded data is placed there.
If no argument provided we try the default tmp directory.
If permissions are not provided, uses defaults if fname is in user folder.
If not in user folder, tries to set 777.

	
covid19_inference.data_retrieval.retrieval.backup_instances(trace=None, model=None, fname='latest_')

	helper to save or load trace and model instances.
loads from fname if provided traces and model variables are None,
else saves them there.

Johns Hops University

	
class covid19_inference.data_retrieval.JHU(auto_download=False)

	This class can be used to retrieve and filter the dataset from the online repository of the coronavirus visual dashboard operated
by the Johns Hopkins University [https://coronavirus.jhu.edu/].

	Features
	
	download all files from the online repository of the coronavirus visual dashboard operated by the Johns Hopkins University.

	filter by deaths, confirmed cases and recovered cases

	filter by country and state

	filter by date

Example

jhu = cov19.data_retrieval.JHU()
jhu.download_all_available_data()

#Acess the data by
jhu.data
#or
jhu.get_new("confirmed","Italy")
jhu.get_total(filter)

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with jhu specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main urls (self.url_csv) which was set on initialization of
this class.
If this fails it downloads from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_total_confirmed_deaths_recovered(country: str = None, state: str = None, begin_date: datetime.datetime = None, end_date: datetime.datetime = None)

	Retrieves all confirmed, deaths and recovered cases from the Johns Hopkins University dataset as a DataFrame with datetime index.
Can be filtered by country and state, if only a country is given all available states get summed up.

	Parameters

	
	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the country (the “Country/Region” column), can be None if the whole summed up data is wanted (why would you do this?)

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the state (the “Province/State” column), can be None if country is set or the whole summed up data is wanted

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame

	
get_new(value='confirmed', country: str = None, state: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Retrieves all new cases from the Johns Hopkins University dataset as a DataFrame with datetime index.
Can be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the country (the “Country/Region” column), can be None

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the state (the “Province/State” column), can be None

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with new cases and the date as index

	
get_total(value='confirmed', country: str = None, state: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Retrieves all total/cumulative cases from the Johns Hopkins University dataset as a DataFrame with datetime index.
Can be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the country (the “Country/Region” column), can be None

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the state (the “Province/State” column), can be None

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with total/cumulative cases and the date as index

	
filter_date(df, begin_date: datetime.datetime = None, end_date: datetime.datetime = None)

	Returns give dataframe between begin and end date. Dataframe has to have a datetime index.

	Parameters

	
	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – First day that should be filtered

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – Last day that should be filtered

	Returns

	pandas.DataFrame

	
get_possible_countries_states()

	Can be used to get a list with all possible states and coutries.

	Returns

	pandas.DataFrame in the format

Robert Koch Institute

	
class covid19_inference.data_retrieval.RKI(auto_download=False)

	This class can be used to retrieve and filter the dataset from the Robert Koch Institute Robert Koch Institute [https://www.rki.de/].
The data gets retrieved from the arcgis [https://www.arcgis.com/sharing/rest/content/items/f10774f1c63e40168479a1feb6c7ca74/data] dashboard.

	Features
	
	download the full dataset

	filter by date

	filter by bundesland

	filter by recovered, deaths and confirmed cases

Example

rki = cov19.data_retrieval.RKI()
rki.download_all_available_data()

#Acess the data by
rki.data
#or
rki.get_new("confirmed","Sachsen")
rki.get_total(filter)

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with rki specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_total(value='confirmed', bundesland: str = None, landkreis: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None, date_type: str = 'date', age_group=None)

	Gets all total confirmed cases for a region as dataframe with date index. Can be filtered with multiple arguments.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	bundesland (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for Germany

	landkreis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for the region (bundesland)

	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – initial date, if no value is provided it will use the first possible date

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date, if no value is provided it will use the most recent possible date

	date_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of date to use: reported date ‘date’ (Meldedatum in the original dataset), or symptom date ‘date_ref’ (Refdatum in the original dataset)

	age_group (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Choosen age group. To get the possible combinations use possible_age_groups().

	Returns

	pandas.DataFrame

	
get_new(value='confirmed', bundesland: str = None, landkreis: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None, date_type: str = 'date', age_group=None)

	Retrieves all new cases from the Robert Koch Institute dataset as a DataFrame with datetime index.
Can be filtered by value, bundesland and landkreis, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “recovered”,
- “deaths”
(default: “confirmed”)

	bundesland (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for Germany

	landkreis (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if no value is provided it will use the full summed up dataset for the region (bundesland)

	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used,
if none is given could yield errors

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	age_group (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Choosen age group. To get the possible combinations use possible_age_groups().

	Returns

	pandas.DataFrame – table with daily new confirmed and the date as index

	
filter(data_begin: datetime.datetime = None, data_end: datetime.datetime = None, variable='confirmed', date_type='date', level=None, value=None, age_group=None)

	Filters the obtained dataset for a given time period and returns an array ONLY containing only the desired variable.

	Parameters

	
	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – initial date, if no value is provided it will use the first possible date

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date, if no value is provided it will use the most recent possible date

	variable (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of variable to return
possible types are:
“confirmed” : cases (default)
“AnzahlTodesfall” : deaths
“AnzahlGenesen” : recovered

	date_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of date to use: reported date ‘date’ (Meldedatum in the original dataset), or symptom date ‘date_ref’ (Refdatum in the original dataset)

	level (str [https://docs.python.org/3/library/stdtypes.html#str], optional) –
	possible strings are:
	”None” : return data from all Germany (default)
“Bundesland” : a state
“Landkreis” : a region

	value (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – string of the state/region
e.g. “Sachsen”

	age_group (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Choosen age group. To get the possible combinations use possible_age_groups().

	Returns

	pd.DataFrame – array with ONLY the requested variable, in the requested range. (one dimensional)

	
filter_all_bundesland(begin_date: datetime.datetime = None, end_date: datetime.datetime = None, variable='confirmed', date_type='date')

	Filters the full RKI dataset

	Parameters

	
	df (DataFrame) – RKI dataframe, from get_rki()

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – initial date to return

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – last date to return

	variable (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of variable to return: cases (“AnzahlFall”), deaths (“AnzahlTodesfall”), recovered (“AnzahlGenesen”)

	date_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of date to use: reported date ‘date’ (Meldedatum in the original dataset), or symptom date ‘date_ref’ (Refdatum in the original dataset)

	Returns

	pd.DataFrame – DataFrame with datetime dates as index, and all German regions (bundesländer) as columns

	
possible_age_groups()

	Returns the valid age groups in the dataset.

Robert Koch Institute situation reports

	
class covid19_inference.data_retrieval.RKIsituationreports(auto_download=False)

	As mentioned by Matthias Linden, the daily situation reports have more available data.
This class retrieves this additional data from Matthias website and parses it into the format we use i.e. a datetime index.

Interesting new data is for example ICU cases, deaths and recorded symptoms. For now one can look at the data by running

Example

rki_si_re = cov19.data_retrieval.RKIsituationreports(True)
print(rki_si_re.data)

Todo

Filter functions for ICU, Symptoms and maybe even daily new cases for the respective categories.

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with rki situation reports specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

Google

	
class covid19_inference.data_retrieval.GOOGLE(auto_download=False)

	This class can be used to retrieve the mobility dataset from
Google [https://coronavirus.jhu.edu/].

Example

gl = cov19.data_retrieval.GOOGLE()
gl.download_all_available_data()

#Acess the data by
gl.data
#or
gl.get_changes(filter)

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with google specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_changes(country: str, state: str = None, region: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Returns a dataframe with the relative changes in mobility to a baseline, provided by google.
They are separated into “retail and recreation”, “grocery and pharmacy”, “parks”, “transit”, “workplaces” and “residental”.
Filterable for country, state and region and date.

	Parameters

	
	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – Selected country for the mobility data.

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – State for the selected data if no value is selected the whole country is chosen

	region (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Region for the selected data if no value is selected the whole region/country is chosen

	data_end (data_begin,) – Filter for the desired time period

	Returns

	pandas.DataFrame

	
get_possible_counties_states_regions()

	Can be used to obtain all different possible countries with there corresponding possible states and regions.

	Returns

	pandas.DataFrame

Our World in Data

	
class covid19_inference.data_retrieval.OWD(auto_download=False)

	This class can be used to retrieve the testings dataset from
Our World in Data [https://ourworldindata.org/coronavirus].

Example

owd = cov19.data_retrieval.OWD()
owd.download_all_available_data()

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with google specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_possible_countries()

	Can be used to obtain all different possible countries in the dataset.

	Returns

	pandas.DataFrame

	
get_total(value='tests', country=None, data_begin=None, data_end=None)

	Retrieves all new cases from the Our World in Data dataset as a DataFrame with datetime index.
Can be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “tests”,
- “deaths”,
- “vacination”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the country

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with new cases and the date as index

	
get_new(value='tests', country=None, data_begin=None, data_end=None)

	Retrieves all new cases from the Our World in Data dataset as a DataFrame with datetime index.
casesn be filtered by value, country and state, if only a country is given all available states get summed up.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data to return, possible values are
- “confirmed”,
- “tests”,
- “deaths”
(default: “confirmed”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the country

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	pandas.DataFrame – table with new cases and the date as index

Financial times

	
class covid19_inference.data_retrieval.FINANCIAL_TIMES(auto_download=False)

	This class can be used to retrieve the excess mortality data from the Financial Times
github repository [https://github.com/Financial-Times/coronavirus-excess-mortality-data].

Example

ft = cov19.data_retrieval.FINANCIAL_TIMES()
ft.download_all_available_data()

#Access the data by
ft.data
#or
ft.get(filter) #see below

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with financial
times specific arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get(value='excess_deaths', country: str = 'Germany', state: str = None, data_begin: datetime.datetime = None, data_end: datetime.datetime = None)

	Retrieves specific data from the dataset, can be filtered by date, country and state.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which data to return, possible values are
- “deaths”,
- “expected_deaths”,
- “excess_deaths”,
- “excess_deaths_pct”
(default: “excess_deaths”)

	country (str [https://docs.python.org/3/library/stdtypes.html#str], optional) –

	state (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Possible countries and states can be retrieved by the get_possible_countries_states() method.

	begin_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – First day that should be filtered

	end_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – Last day that should be filtered

	
get_possible_countries_states()

	Can be used to obtain all different possible countries with there corresponding possible states and regions.

	Returns

	pandas.DataFrame

Oxford COVID-19 Government Response Tracker

	
class covid19_inference.data_retrieval.OxCGRT(auto_download=False)

	This class can be used to retrieve the datasset on goverment policies from the
Oxford Covid-19 Government Response Tracker [https://github.com/OxCGRT/covid-policy-tracker].

Example

gov_pol = cov19.data_retrieval.OxCGRT()
gov_pol.download_all_available_data()

	
__init__(auto_download=False)

	On init of this class the base Retrieval Class __init__ is called, with google specific
arguments.

	Parameters

	auto_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not to automatically call the download_all_available_data() method.
One should explicitly call this method for more configuration options
(default: false)

	
download_all_available_data(force_local=False, force_download=False)

	Attempts to download from the main url (self.url_csv) which was given on initialization.
If this fails download from the fallbacks. It can also be specified to use the local files
or to force the download. The download methods get inhereted from the base retrieval class.

	Parameters

	
	force_local (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces to load the local files.

	force_download (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True forces the download of new files

	
get_possible_countries()

	Can be used to obtain all different possible countries in the dataset.

	Returns

	pandas.DataFrame

	
get_possible_policies()

	Can be used to obtain all policies in there corresponding categories possible countries in the dataset.

	Returns

	dict

	
get_change_points(policies, country)

	Returns a list of change points, depending on the selected measure and country.

	Parameters

	
	policies (str [https://docs.python.org/3/library/stdtypes.html#str], array of str) – The wanted policies. Can be an array of strings, use get_possible_policies() to get
a dict of possible policies.

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter for country, use get_possible_countries() to get a list of possible ones.

	Returns

	array of dicts

	
get_time_data(policy, country, data_begin=None, data_end=None)

	
	Parameters

	
	policy (str [https://docs.python.org/3/library/stdtypes.html#str]) – The wanted policy.

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filter for country, use get_possible_countries() to get a list of possible ones.

	data_begin (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – intial date for the returned data, if no value is given the first date in the dataset is used,
if none is given could yield errors

	data_end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], optional) – last date for the returned data, if no value is given the most recent date in the dataset is used

	Returns

	Pandas dataframe with policy

Base Retrieval Class

	
class covid19_inference.data_retrieval.retrieval.Retrieval(name, url_csv, fallbacks, update_interval=None, **kwargs)

	Each source class should inherit this base retrieval class, it streamlines alot
of base functions. It manages downloads, multiple fallbacks and local backups
via timestamp. At init of the parent class the Retrieval init should be called
with the following arguments, these get saved as attributes.

An example for the usage can be seen in the _Google, _RKI and _JHU source files.

	
__init__(name, url_csv, fallbacks, update_interval=None, **kwargs)

	
	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name for the Parent class, mainly used for the local file backup.

	url_csv (str [https://docs.python.org/3/library/stdtypes.html#str]) – The url to the main dataset as csv, if an empty string if supplied the fallback routines get used.

	fallbacks (array) – Fallbacks can be filepaths to local or online sources
or even methods defined in the parent class.

	update_interval (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – If the local file is older than the update_interval it gets updated once the
download all function is called.

	
_download_csv_from_source(filepath, **kwargs)

	Uses pandas read csv to download the csv file.
The possible kwargs can be seen in the pandas documentation [https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv].

These kwargs can vary for the different parent classes and should be defined there!

	filepathstr
	Full path to the desired csv file

	Returns

	bool – True if the retrieval was a success, False if it failed

	
_fallback_handler()

	Recursivly iterate over all fallbacks and try to execute subroutines depending on the
type of fallback.

	
_timestamp_local_old(force_local=False) → bool

	
	Get timestamp if it exists

	compare with the date today

	update if data is older than set intervall -> can be parent dependant

	
_save_to_local()

	Creates a local backup for the self.data pandas.DataFrame. And a timestamp for the source.

Sampling

Table of Contents

	Sampling

	
covid19_inference.sampling.robust_sample(model, tune, draws, final_chains, burnin_chains, burnin_draws=None, burnin_chains_2nd=None, burnin_draws_2nd=None, args_start_points=None, callback=None, sample_kwargs=None, **kwargs)

	Samples the model by starting more chains than needed (burn-in chains) and using only
a reduced number final_chains for the final sampling. The final chains are randomly
chosen (without replacement) weighted by their likelihood.
:param model: The model
:type model: Cov19Model
:param tune: Number of tuning samples
:type tune: int
:param draws: Number of final samples
:type draws: int
:param final_chains: Number of draw chains
:type final_chains: int
:param burnin_chains: Number of chains used during burn-in, recommended to use about 2-3 time more than

the number of final_chains

	Parameters

	
	burnin_draws (int [https://docs.python.org/3/library/functions.html#int]) – Length of the burn-in period, can be fairly short, on the order of a few hundreds
draws. By default it set to tune//2

	burnin_chains_2nd (int [https://docs.python.org/3/library/functions.html#int]) – If not None, use a two-stage burn-in period, reducing the number of chains each time,
Therefore, it should be less than burnin_chains and more than final_chains:
burnin_chains > burnin_chains_2nd > final_chains

	burnin_draws_2nd (int [https://docs.python.org/3/library/functions.html#int]) – Length of the second burn-in period. By default it set burnin_draws

	args_start_points (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments passed to get_start_points

	tune_2nd (int [https://docs.python.org/3/library/functions.html#int]) – If set, use different number of tuning samples for the second tuning

	sample_kwargs – Arguments passed to pm.sample

	**kwargs – Arguments passed to the nuts step function.

	Returns

	
	trace (trace as multitrace object)

	trace_az (trace as arviz object)

	
covid19_inference.sampling.get_start_points(trace, trace_az, frames_start=None, SD_chain_logl=2.5)

	Returns the starting points such that the chains deviate at most SD_chain_logl
standard deviations from the chain with the highest likelihood.
:param trace:
:type trace: multitrace object
:param trace_az:
:type trace_az: arviz trace object
:param frames_start: Which frames to use for calculating the mean likelihood and its standard deviation.

By default it is set to the last third of the tuning samples

	Parameters

	SD_chain_logl (None [https://docs.python.org/3/library/constants.html#None] or float [https://docs.python.org/3/library/functions.html#float]) – The number of standard deviations. 2.5 as default. If None, keep all chains

	Returns

	
	start_points – A list of starting points

	logl_mean – The mean log-likelihood of the starting points

Plotting

We provide a lot of plotting functions which can be used to recreate our plots or
create completely new visualizations. If you are familiar with matplotlib it should
be no problem to use them extensively.

We provide three different types of functions here:

	High level functions These can be used create figures similar to our paper Dehning et al. arXiv:2004.01105. The are neat little one liners which create a good looking plot from our model, but do not have a lot of customization options.

	Low level functions These extend the normal matplotlib plotting functions and can be used to plot arbitrary data. They have a lot of customization options, it could take some time to get nicely looking plots with these functions though.

	Helper functions These are mainly functions that manipulate data or retrieve data from our model. These do not have to be used most of the time and are only documented here for completeness.

If one just wants to recreate our figures with a different color. The easiest was is to change the default rc parameters.

	
covid19_inference.plot.rcParams.get_rcparams_default()

	Get a Param (dict) of the default parameters.
Here we set our default values. Assigned once to module variable
rcParamsDefault on load.

	
covid19_inference.plot.rcParams.set_rcparams(par)

	Sets the rcparameters used for plotting, provided instance of Param has to have
the following keys (attributes):

	Variables

	
	locale (str [https://docs.python.org/3/library/stdtypes.html#str]) – region settings, passed to setlocale(). Default: “en_US”

	date_format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format the date on the x axis of time-like data (see https://strftime.org/)
example April 1 2020:
“%m/%d” 04/01, “%-d. %B” 1. April
Default “%b %-d”, becomes April 1

	date_show_minor_ticks (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the minor ticks (for every day). Default: True

	rasterization_zorder (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Rasterizes plotted content below this value, set to None to keep everything
a vector.
Default: -1

	draw_ci_95 (bool [https://docs.python.org/3/library/functions.html#bool]) – For time series plots, indicate 95% Confidence interval via fill between.
Default: True

	draw_ci_75 (bool [https://docs.python.org/3/library/functions.html#bool]) – For time series plots, indicate 75% Confidence interval via fill between.
Default: False

	draw_ci_50 (bool [https://docs.python.org/3/library/functions.html#bool]) – For time series plots, indicate 50% Confidence interval via fill between.
Default: False

	color_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base color used for model plots, mpl compatible color code “C0”, “#303030”
Default: “tab:green”

	color_data (str [https://docs.python.org/3/library/stdtypes.html#str]) – Base color used for data
Default: “tab:blue”

	color_annot (str [https://docs.python.org/3/library/stdtypes.html#str]) – Color to use for annotations
Default: “#646464”

	color_prior (str [https://docs.python.org/3/library/stdtypes.html#str]) – Color to used for priors in distributions
Default: “#708090”

	color_posterior (str [https://docs.python.org/3/library/stdtypes.html#str]) – Color used in posterior plotting

Example

Get default parameter
pars = cov.plot.get_rcparams_default()

Change parameters
pars["locale"]="de_DE"
pars["color_data"]="tab:purple"

Set parameters
cov.plot.set_rcparams(pars)

High level functions

	
covid19_inference.plot.timeseries_overview(model, idata, start=None, end=None, region=None, color=None, save_to=None, offset=0, annotate_constrained=True, annotate_watermark=True, axes=None, forecast_label='Forecast', forecast_heading='$\\bf Forecasts\\!:$', add_more_later=False)

	Create the time series overview similar to our paper.
Dehning et al. arXiv:2004.01105
Contains [image: \lambda], new cases, and cumulative cases.

	Parameters

	
	model (Cov19Model) –

	trace (arviz.InferenceData [https://arviz-devs.github.io/arviz/api/generated/arviz.InferenceData.html#arviz.InferenceData]) – needed for the data

	offset (int [https://docs.python.org/3/library/functions.html#int]) – offset that needs to be added to the (cumulative sum of) new cases at time
model.data_begin to arrive at cumulative cases

	start (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – only used to set xrange in the end

	end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – only used to set xrange in the end

	color (str [https://docs.python.org/3/library/stdtypes.html#str]) – main color to use, default from rcParam

	save_to (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – path where to save the figures. default: None, not saving figures

	annotate_constrained (bool [https://docs.python.org/3/library/functions.html#bool]) – show the unconstrained constrained annotation in lambda panel

	annotate_watermark (bool [https://docs.python.org/3/library/functions.html#bool]) – show our watermark

	axes (np.array of mpl axes) – provide an array of existing axes (from previously calling this function)
to add more traces. Data will not be added again. Ideally call this first
with add_more_later=True

	forecast_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – legend label for the forecast, default: “Forecast”

	forecast_heading (str [https://docs.python.org/3/library/stdtypes.html#str]) – if add_more_later, how to label the forecast section.
default: “$bf Forecasts!:$”,

	add_more_later (bool [https://docs.python.org/3/library/functions.html#bool]) – set this to true if you plan to add multiple models to the plot. changes the layout (and the color of the fit to past data)

	Returns

	
	fig (mpl figure)

	axes (np array of mpl axeses (insets not included))

Todo

	Replace offset with an instance of data class that should yield the
cumulative cases. we should not to calculations here.

	
covid19_inference.plot.distribution.distribution(model, idata, key, nSamples_prior=1000, title='', dist_math='x', indices=None, ax=None)

	High level plotting function for distribution overviews.
Only works if the distrubtion is one dim or two dimensional.

	Parameters

	
	model (Cov19Model) – The model used to create the inference data

	idata (av.InferenceData) – The inference data containing the posterior samples

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable of interest (which should be plotted)

	nSamples_prior (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to draw for the prior kernel density estimation.

	indices (array-like int) – Which dimensions do you want to plot from the variable? default: None i.e. all

Low level functions

	
covid19_inference.plot.timeseries._timeseries(x, y, ax=None, what='data', draw_ci_95=None, draw_ci_75=None, draw_ci_50=None, date_format=True, alpha_ci=None, **kwargs)

	low-level function to plot anything that has a date on the x-axis.

	Parameters

	
	x (array of datetime.datetime) – times for the x axis

	y (array, 1d or 2d) – data to plot. if 2d, we plot the CI as fill_between (if CI enabled in rc
params)
if 2d, then first dim is realization and second dim is time matching x
if 1d then first tim is time matching x

	ax (mpl axes element, optional) – plot into an existing axes element. default: None

	what (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – what type of data is provided in x. sets the style used for plotting:
* data for data points
* fcast for model forecast (prediction)
* model for model reproduction of data (past)

	date_format (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Automatic converting of index to dates default:True

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – directly passed to plotting mpl.

	Returns

	ax

	
covid19_inference.plot.distribution._distribution(array_posterior, array_prior, dist_name, dist_math, suffix='', ax=None)

	Low level function to plots posterior and prior from arrays.

	Parameters

	
	array_prior (array_posterior,) – Sampling data as array, should be filtered beforehand. If none
it does not get plotted!

	dist_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of distribution for plotting

	dist_math (str [https://docs.python.org/3/library/stdtypes.html#str]) – math of distribution for plotting

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str],optional) – Suffix for the plot title e.g. “age_group_1”
Default: “”

	ax (mpl axes element, optional) – Plot into an existing axes element
Default: None

Example

In this example we want to use the low level time series function to plot the new daily cases and deaths reported by the Robert Koch institute.

import datetime
import matplotlib.pyplot as plt
import covid19_inference as cov19

Data retrieval i.e. download new data from RobertKochInstitue
rki = cov19.data_retrieval.RKI()
rki.download_all_available_data()

new_deaths = rki.get_new(
 value = "deaths",
 data_begin=datetime.datetime(2020,3,15), #arbitrary data
 data_end=datetime.datetime.today())

new_cases = rki.get_new(
 value = "confirmed",
 data_begin=datetime.datetime(2020,3,15),
 data_end=datetime.datetime.today())

Create a multiplot
fig, axes = plt.subplots(2,1, figsize=(12,6))

Plot the new cases onto axes[0]
cov19.plot._timeseries(
 x=new_cases.index,
 y=new_cases,
 ax=axes[0],
 what="model", #We define model here to get a line instead of data points
)

Plot the new deaths onto axes[1]
cov19.plot._timeseries(
 x=new_deaths.index,
 y=new_deaths,
 ax=axes[1],
 what="model", #We define model here to get a line instead of data points
)

Label the plots

axes[0].set_title("New cases")

axes[1].set_title("New deaths")

Show the figure
fig.show()

[image: ../_images/exampe_timeseries.png]

Helper functions

	
covid19_inference.plot.utils.get_array_from_idata(idata, var, from_type='posterior')

	Reshapes and returns an numpy array from an arviz idata

	Parameters

	
	idata (arviz.InferenceData [https://arviz-devs.github.io/arviz/api/generated/arviz.InferenceData.html#arviz.InferenceData]) – InferenceData object

	var (str [https://docs.python.org/3/library/stdtypes.html#str]) – Variable name

	from_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Type of data to return. Options are:
* posterior : posterior samples
* prior : prior samples
* … check idata attributes for options

	Returns

	array (numpy.ndarray with chain and smaples flattened)

	
covid19_inference.plot.utils.get_array_from_idata_via_date(model, idata, var, start=None, end=None, dates=None)

	
	Parameters

	
	model (Cov19Model) –

	idata (arviz.InferenceData [https://arviz-devs.github.io/arviz/api/generated/arviz.InferenceData.html#arviz.InferenceData]) –

	var (str [https://docs.python.org/3/library/stdtypes.html#str]) – the variable name in the trace

	start (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – get all data for a range from start to end. (both boundary
dates included)

	end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) –

	dates (list of datetime.datetime objects, optional) – the dates for which to get the data. Default: None, will return
all available data.

	Returns

	
	data (nd array, 3 dim) – the elements from the trace matching the dates.
dimensions are as follows
0 samples, if no samples only one entry
1 data with time matching the returned dates (if compatible variable)
2 region, if no regions only one entry

	dates (pandas DatetimeIndex) – the matching dates. this is essnetially an array of dates than can be passed
to matplotlib

Example

import covid19_inference as cov
model, trace = cov.create_example_instance()
y, x = cov.plot._get_array_from_trace_via_date(
 model, trace, "lambda_t", model.data_begin, model.data_end
)
ax = cov.plot._timeseries(x, y[:,:,0], what="model")

	
covid19_inference.plot.timeseries._new_cases_to_cum_cases(x, y, what, offset=0)

	so this conversion got ugly really quickly.
need to check dimensionality of y

	Parameters

	
	x (pandas DatetimeIndex array) – will be padded accordingly

	y (1d or 2d numpy array) – new cases matching dates in x.
if 1d, we assume raw data (no samples)
if 2d, we assume results from trace with 0th dim samples and 1st new cases
matching x

	what (str [https://docs.python.org/3/library/stdtypes.html#str]) – dirty workaround to differntiate between traces and raw data
“data” or “trace”

	offset (int [https://docs.python.org/3/library/functions.html#int] or array like) – added to cum sum (should be the known cumulative case number at the
first date of provided in x)

	Returns

	
	x_cum (pandas DatetimeIndex array) – dates of the cumulative cases

	y_cum (nd array) – cumulative cases matching x_cum and the dimension of input y

Example

cum_dates, cum_cases = _new_cases_to_cum_cases(new_dates, new_cases)

	
covid19_inference.plot.distribution._get_mpl_text_coordinates(text, ax)

	helper to get coordinates of a text object in the coordinates of the
axes element [0,1].
used for the rectangle backdrop.

Returns:
x_min, x_max, y_min, y_max

	
covid19_inference.plot.distribution._add_mpl_rect_around_text(text_list, ax, x_padding=0.05, y_padding=0.05, **kwargs)

	add a rectangle to the axes (behind the text)

provide a list of text elements and possible options passed to
mpl.patches.Rectangle
e.g.
facecolor=”grey”,
alpha=0.2,
zorder=99,

	
covid19_inference.plot.utils.format_k(prec)

	format yaxis 10_000 as 10 k.
_format_k(0)(1200, 1000.0) gives “1 k”
_format_k(1)(1200, 1000.0) gives “1.2 k”

	
covid19_inference.plot.utils.format_date_xticks(ax, minor=None)

	

	
covid19_inference.plot.distribution._truncate_number(number, precision)

	

	
covid19_inference.plot.distribution._string_median_CI(arr, prec=2)

	

	
covid19_inference.plot.utils.add_watermark(ax, mark='Dehning et al. 10.1126/science.abb9789')

	Add our arxive url to an axes as (upper right) title

	
covid19_inference.plot.rcParams

	alias of covid19_inference.plot.rcParams

Variables saved in the trace

The trace by default contains the following parameters in the
SIR/SEIR hierarchical model. XXX denotes a number.

	Name in trace

	Dimensions

	Created by function

	lambda_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	lambda_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs

	sigma_lambda_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_day_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_day_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs

	sigma_transient_day_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_len_XXX_L1

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	transient_len_XXX_L2

	samples x regions

	lambda_t_with_sigmoids/make_change_point_RVs

	sigma_transient_len_XXX_L2

	samples

	lambda_t_with_sigmoids/make_change_point_RVs

	delay_L1

	samples

	delay_cases

	delay_L2

	samples x regions

	delay_cases

	sigma_delay_L2

	samples

	delay_cases

	weekend_factor_L1

	samples

	week_modulation

	weekend_factor_L2

	samples x regions

	week_modulation

	sigma_weekend_factor_L2

	samples

	week_modulation

	offset_modulation

	samples

	week_modulation

	new_cases_raw

	samples x time x regions

	week_modulation

	mu

	samples

	SIR/SEIR

	I_begin

	samples x regions

	SIR/SEIR

	new_cases

	samples x time x regions

	SIR/SEIR

	sigma_obs

	samples x regions

	SIR/SEIR

	new_E_begin

	samples x 11 x regions

	SEIR

	median_incubation_L1

	samples

	SEIR

	median_incubation_L2

	samples x regions

	SEIR

	sigma_median_incubation_L2

	samples

	SEIR

For the non-hierchical model, variables with _L2 suffixes are missing, and _L1 suffixes
are removed from the name.

Contributing

We always welcome contributions. Here we gather some guidelines
to make the process as smooth as possible.

Beginning

To see where help is needed, go to the issues page on Github. If you want to
begin on an issue, make a comment below and begin a draft pull request:
https://github.blog/2019-02-14-introducing-draft-pull-requests/ You can link the
pull request on the right side of the commit to it.

When you have
finished working on the issue, change it to a regular pull request. Check that
there are no conflicts to the current master
(https://www.digitalocean.com/community/tutorials/how-to-rebase-and-update-a-pull-request)

Code formatting

We use black https://github.com/psf/black as automatic code formatter.
Please run your code through it before you open a pull request.

We do not check for formatting in the testing (travis) but have a config in the repository that uses black as a pre-commit hook [https://black.readthedocs.io/en/stable/version_control_integration.html].

This snippet should get you up and running:

conda install -c conda-forge black
conda install -c conda-forge pre-commit
pre-commit install

Try to stick to PEP 8 [https://www.python.org/dev/peps/pep-0008/].
You can use type annotations [https://www.python.org/dev/peps/pep-0484/]
if you want, but it is not necessary or encouraged.

Testing

We use travis and pytest. To check your changes locally:

python -m pytest --log-level=INFO --log-cli-level=INFO

It would be great if anything that is added to the code-base has an according test in the tests folder. We are not there yet, but it is on the todo. Be encouraged to add tests :)

Documentation

The documentation is built using Sphinx from the docstrings. To test it before
submitting, navigate with a terminal to the docs/ directory. Install if necessary
the packages listed in piprequirements.txt run make html. The documentation
can then be accessed in docs/_build/html/index.html. As an example you can
look at the documentation of covid19_inference.model.SIR()

Debugging

This is some pointer to help debugging models and sampling issues.

General approach for nans/infs during sampling

The idea of this approach is to sample from the prior and then run the model. If the
log likelihood is then -inf, there is a problem, and the output of the theano functions is
inspected.

Sample from prior:

from pymc3.util import (
 get_untransformed_name,
 is_transformed_name)

varnames = list(map(str, model.vars))

for name in varnames:
 if is_transformed_name(name):
 varnames.append(get_untransformed_name(name))

with model:
 points = pm.sample_prior_predictive(var_names = varnames)
 points_list = []
 for i in range(len(next(iter(points.values())))):
 point_dict = {}
 for name, val in points.items():
 point_dict[name] = val[i]
 points_list.append(point_dict)

points_list is a list of the starting points for the model, sampled from the prior.
Then to run the model and print the log-likelihood:

fn = model.fn(model.logpt)

for point in points_list[:]:
 print(fn(point))

To monitor the output and save it in a file (for use in ipython).
Learned from:
http://deeplearning.net/software/theano/tutorial/debug_faq.html#how-do-i-step-through-a-compiled-function

%%capture cap --no-stderr
def inspect_inputs(i, node, fn):
 print(i, node, "input(s) value(s):", [input[0] for input in fn.inputs],
 end='')

def inspect_outputs(i, node, fn):
 print(" output(s) value(s):", [output[0] for output in fn.outputs])

fn_monitor = model.fn(model.logpt,
 mode=theano.compile.MonitorMode(
 pre_func=inspect_inputs,
 post_func=inspect_outputs).excluding(
 'local_elemwise_fusion', 'inplace'))

fn = model.fn(model.logpt)

for point in points_list[:]:
 if fn(point) < -1e10:
 print(fn_monitor(point))
 break

In a new cell:

with open('output.txt', 'w') as f:
 f.write(cap.stdout)

Then one can open output.txt in a text editor, and follow from where infs or nans come from
by following the inputs and outputs up through the graph

Sampler: MCMC (Nuts)

Divergences

During sampling, a significant fraction of divergences are a sign that the sampler
doesn’t sample the whole posterior. In this case the model should be reparametrized.
See this tutorial for a typical example: https://docs.pymc.io/notebooks/Diagnosing_biased_Inference_with_Divergences.html

And these papers include some more details: https://pdfs.semanticscholar.org/7b85/fb48a077c679c325433fbe13b87560e12886.pdf
https://arxiv.org/pdf/1312.0906.pdf

Bad initial energy

This typically occurs when some distribution in the model can’t be evaluated at
the starting point of chain. Run this to see which distribution throws nans or infs:

for RV in model.basic_RVs:
 print(RV.name, RV.logp(model.test_point))

However, this is only evaluates the test_point. When PyMC3 starts sampling, it adds some jitter
around this test_point, which then could lead to nans. Run this to add jitter and then evaluate
the logp:

chains=4
for RV in model.basic_RVs:
 print(RV.name)

 for _ in range(chains):
 mean = {var: val.copy() for var, val in model.test_point.items()}
 for val in mean.values():
 val[...] += 2 * np.random.rand(*val.shape) - 1
 print(RV.logp(mean))

This code could potentially change in newer versions of PyMC3 (this is tested in 3.8).
Read the source code, to know which random jitter PyMC3 currently adds at beginning.

Nans occur during sampling

Run the sampler with the debug mode of Theano.

from theano.compile.nanguardmode import NanGuardMode
mode = NanGuardMode(nan_is_error=True, inf_is_error=False, big_is_error=False,
 optimizer='o1')
trace = pm.sample(mode=mode)

However this doesn’t lead to helpful messages if nans occur during gradient evaluations.

Sampler: Variational Inference

There exist some ways to track parameters during sampling. An example:

with model:
 advi = pm.ADVI()
 print(advi.approx.group)

 print(advi.approx.mean.eval())
 print(advi.approx.std.eval())

 tracker = pm.callbacks.Tracker(
 mean=advi.approx.mean.eval, # callable that returns mean
 std=advi.approx.std.eval # callable that returns std
)

 approx = advi.fit(100000, callbacks=[tracker],
 obj_optimizer=pm.adagrad_window(learning_rate=1e-3),)
 #total_grad_norm_constraint=10) #constrains maximal gradient, could help

 print(approx.groups[0].bij.rmap(approx.params[0].eval()))

 plt.plot(tracker['mean'])
 plt.plot(tracker['std'])

For the tracker, the order of the parameters is saved in:

approx.ordering.by_name

and the indices encoded there in the slc field.
To plot the mean value of a given parameter name, run:

plt.plot(np.array(tracker['mean'])[:, approx.ordering.by_name['name'].slc]

The debug mode is set with the following parameter:

from theano.compile.nanguardmode import NanGuardMode
mode = NanGuardMode(nan_is_error=True, inf_is_error=False, big_is_error=False,
 optimizer='o1')
approx = advi.fit(100000, callbacks=[tracker],
 fn_kwargs={'mode':mode})

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 covid19_inference	

 	
 	
 covid19_inference.data_retrieval.retrieval	

 	
 	
 covid19_inference.model.utility	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | J
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (covid19_inference.data_retrieval.FINANCIAL_TIMES method)

 	(covid19_inference.data_retrieval.GOOGLE method)

 	(covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.OxCGRT method)

 	(covid19_inference.data_retrieval.retrieval.Retrieval method)

 	(covid19_inference.data_retrieval.RKI method)

 	(covid19_inference.data_retrieval.RKIsituationreports method)

 	_add_mpl_rect_around_text() (in module covid19_inference.plot.distribution)

 	
 	_distribution() (in module covid19_inference.plot.distribution)

 	_download_csv_from_source() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_fallback_handler() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_get_mpl_text_coordinates() (in module covid19_inference.plot.distribution)

 	_new_cases_to_cum_cases() (in module covid19_inference.plot.timeseries)

 	_save_to_local() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_string_median_CI() (in module covid19_inference.plot.distribution)

 	_timeseries() (in module covid19_inference.plot.timeseries)

 	_timestamp_local_old() (covid19_inference.data_retrieval.retrieval.Retrieval method)

 	_truncate_number() (in module covid19_inference.plot.distribution)

A

 	
 	add_watermark() (in module covid19_inference.plot.utils)

B

 	
 	backup_instances() (in module covid19_inference.data_retrieval.retrieval)

C

 	
 	Cov19Model (class in covid19_inference.model)

 	covid19_inference (module), [1]

 	
 	covid19_inference.data_retrieval.retrieval (module)

 	covid19_inference.model.utility (module)

D

 	
 	delay_cases() (in module covid19_inference.model)

 	distribution() (in module covid19_inference.plot.distribution)

 	download_all_available_data() (covid19_inference.data_retrieval.FINANCIAL_TIMES method)

 	(covid19_inference.data_retrieval.GOOGLE method)

 	(covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.OxCGRT method)

 	(covid19_inference.data_retrieval.RKI method)

 	(covid19_inference.data_retrieval.RKIsituationreports method)

F

 	
 	filter() (covid19_inference.data_retrieval.RKI method)

 	filter_all_bundesland() (covid19_inference.data_retrieval.RKI method)

 	filter_date() (covid19_inference.data_retrieval.JHU method)

 	
 	FINANCIAL_TIMES (class in covid19_inference.data_retrieval)

 	format_date_xticks() (in module covid19_inference.plot.utils)

 	format_k() (in module covid19_inference.plot.utils)

G

 	
 	get() (covid19_inference.data_retrieval.FINANCIAL_TIMES method)

 	get_array_from_idata() (in module covid19_inference.plot.utils)

 	get_array_from_idata_via_date() (in module covid19_inference.plot.utils)

 	get_change_points() (covid19_inference.data_retrieval.OxCGRT method)

 	get_changes() (covid19_inference.data_retrieval.GOOGLE method)

 	get_new() (covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.RKI method)

 	get_possible_counties_states_regions() (covid19_inference.data_retrieval.GOOGLE method)

 	get_possible_countries() (covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.OxCGRT method)

 	
 	get_possible_countries_states() (covid19_inference.data_retrieval.FINANCIAL_TIMES method)

 	(covid19_inference.data_retrieval.JHU method)

 	get_possible_policies() (covid19_inference.data_retrieval.OxCGRT method)

 	get_rcparams_default() (in module covid19_inference.plot.rcParams)

 	get_start_points() (in module covid19_inference.sampling)

 	get_time_data() (covid19_inference.data_retrieval.OxCGRT method)

 	get_total() (covid19_inference.data_retrieval.JHU method)

 	(covid19_inference.data_retrieval.OWD method)

 	(covid19_inference.data_retrieval.RKI method)

 	get_total_confirmed_deaths_recovered() (covid19_inference.data_retrieval.JHU method)

 	GOOGLE (class in covid19_inference.data_retrieval)

H

 	
 	hierarchical_normal() (in module covid19_inference.model.utility)

J

 	
 	JHU (class in covid19_inference.data_retrieval)

L

 	
 	lambda_t_with_sigmoids() (in module covid19_inference.model)

O

 	
 	OWD (class in covid19_inference.data_retrieval)

 	
 	OxCGRT (class in covid19_inference.data_retrieval)

P

 	
 	possible_age_groups() (covid19_inference.data_retrieval.RKI method)

R

 	
 	rcParams (in module covid19_inference.plot)

 	Retrieval (class in covid19_inference.data_retrieval.retrieval)

 	
 	RKI (class in covid19_inference.data_retrieval)

 	RKIsituationreports (class in covid19_inference.data_retrieval)

 	robust_sample() (in module covid19_inference.sampling)

S

 	
 	SEIR() (in module covid19_inference.model)

 	set_data_dir() (in module covid19_inference.data_retrieval.retrieval)

 	
 	set_rcparams() (in module covid19_inference.plot.rcParams)

 	SIR() (in module covid19_inference.model)

 	student_t_likelihood() (in module covid19_inference.model)

T

 	
 	timeseries_overview() (in module covid19_inference.plot)

 	
 	tt_gamma() (in module covid19_inference.model.utility)

 	tt_lognormal() (in module covid19_inference.model.utility)

U

 	
 	uncorrelated_prior_I() (in module covid19_inference.model)

 	
 	untransformed_freeRVs() (covid19_inference.model.Cov19Model property)

W

 	
 	week_modulation() (in module covid19_inference.model)

 nav.xhtml

 Table of Contents

 		
 Indices and tables

 		
 Getting Started

 		
 Examples

 		
 Disclaimer

 		
 Model

 		
 Data Retrieval

 		
 Sampling

 		
 Plotting

 		
 Variables saved in the trace

 		
 Contributing

 		
 Debugging

_images/exampe_timeseries.png
New cases

6000 A
5000 A
4000 -
3000 A
2000 A
1000 A

Mar 15 Mar 22 Mar 29 Apr 05 Apr 12 Apr 19 Apr 26 May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 28 Jul 05
New deaths

400 A

300 -

200 A

100 A

Mar 15 Mar 22 Mar 29 Apr 05 Apr 12 Apr 19 Apr 26 May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 28 Jul 05

_static/file.png

_static/minus.png

_static/plus.png

